Введение Симметрия является фундаментальным свойством природы, представление о котором, как отмечал академик В. И. Вернадский (1863-1945), " слагалось.

Презентация:



Advertisements
Похожие презентации
Симметрия предметов на плоскости. Изображения предметов на плоскости из окружающего мира имеет ось или центр симметрии. С симметрией мы встречаемся в природе,
Advertisements

Осевая и центральная симетрия Осевая и центральная симетрия г.
Презентация на тему: Работу выполнили: Мельничук Людмила 9 «Б» Гусакова Елена 9 «Б»
Самотаева Ирина 9 Б Симметрия и ее виды ЮВАО ГОУ СОШ 1968 Руководитель проекта: Никифорова Марина Николаевна
Симметрия в пространстве Симметрия относительно точки, прямой, плоскости; Симметрия в природе и на практике.
Содержание 2. Движения относительно точки 3. Движения относительно прямой 5. Зеркальная симметрия 6. Заключение 1. Введение 4. Параллельный перенос Закончить.
Зеркальная симметрия. Симметрия - это гармония в расположении одинаковых предметов какой-либо группы или частей в одном предмете, причем расположение.
Зеркальная симметрия Выполнил работу ученик 9Б класса Средней школы 9 Батурин Евгений.
Выполнила: Давыдова Кристина.. Симметрия бывает. 1. Центральная 2. Осевая 3. Симметрия в пространстве(зеркальная)
Симметрия в переводе с греческого означает соразмерность. Под симметрией принято понимать свойство геометрической фигуры, расположенной в пространстве.
Симметрия в переводе с греческого означает соразмерность. Под симметрией принято понимать свойство геометрической фигуры, расположенной в пространстве.
Симметрии
Выполнил: ученик 9 «а» класса Логачёв Михаил. Учитель: Сластихина Т.Г уч. год.
Простейшие виды симметрии симметрия относительно плоскости (зеркальная симметрия) симметрия относительно точки (центральная симметрия) симметрия относительно.
Осевая и зеркальная симметрия Выполняла Васькина Ангелина.
Симметрия вокруг нас «...быть прекрасным значит быть симметричным и соразмерным.» Платон.
Осевая и центральная симметрии Выполнил работу: Полуэктов Влад, 8В класс МБОУ «СОШ 90» ЗАТО Северск Томская область. Руководитель работы: Т.В. Изместьева.
А А 1 А 1 О Точки А и А 1 называются симметричными относительно точки О (центр симметрии), если О – середина отрезка АА 1. Точка О считается симметричной.
Движение Движением (или перемещением) фигуры называется такое ее отображение, при котором каждым двум ее точкам A и B соответствуют такие точки A' и B',
Симметрия (номинация учебные предметы). Симметрия в переводе с греческого означает соразмерность. Под симметрией принято понимать свойство геометрической.
Транксрипт:

Введение Симметрия является фундаментальным свойством природы, представление о котором, как отмечал академик В. И. Вернадский ( ), " слагалось в течение десятков, сотен, тысяч поколений " "Изучение археологических памятников показывает, что человечество на заре своей культуры уже имело представление о симметрии и осуществляло ее в рисунке и в предметах быта. Надо полагать, что применение симметрии в первобытном производстве определялось не только эстетическими мотивами, но в известной мере и уверенностью человека в большей пригодности для практики правильных форм ". Это слова другого нашего замечательного соотечественника, посвятившего изучению симметрии всю свою долгую жизнь, академика А. В. Шубникова ( ). "... быть прекрасным значит быть симметричным и соразмерным." Платон

Асимметрия Если в предмете (или фигуре) отсутствует элементы симметрии, то их называют ассиметричными. Асимметрия всегда придает пластической форме динамику и выявляет ее потенциальную способность к движению. Поэтому принципы асимметрии лежат в основе изображения предметов движущихся или имеющих какое-то отношение к движению либо предметов, в которых надо выразить внутреннюю энергию, жизнь. Скрытые «динамичные» возможности данного композиционного средства объясняются тем, сто возникающее в асимметричной фигуре сильное движение не может замкнуться в себе – оно перетекает на соседние предметы и среду. Получая в них логическое продолжение, оно замыкается и делает фигуру устойчивой, эстетически привлекательной. В этом случае асимметрия рассматривается как промежуточная фаза, как переход от одного вида симметрии к другому. Например, движение асимметричной группы памятника Минину и Пожарскому обращено к площади, к народу, здесь оно находит свое смысловое завершение. Таким образом мы видим, что в природе все находится в равновесии: есть покой и движение, а значит симметрия и асимметрия, которые только дополняют друг друга и делают наш мир гармоничным.Если в предмете (или фигуре) отсутствует элементы симметрии, то их называют ассиметричными. Асимметрия всегда придает пластической форме динамику и выявляет ее потенциальную способность к движению. Поэтому принципы асимметрии лежат в основе изображения предметов движущихся или имеющих какое-то отношение к движению либо предметов, в которых надо выразить внутреннюю энергию, жизнь. Скрытые «динамичные» возможности данного композиционного средства объясняются тем, сто возникающее в асимметричной фигуре сильное движение не может замкнуться в себе – оно перетекает на соседние предметы и среду. Получая в них логическое продолжение, оно замыкается и делает фигуру устойчивой, эстетически привлекательной. В этом случае асимметрия рассматривается как промежуточная фаза, как переход от одного вида симметрии к другому. Например, движение асимметричной группы памятника Минину и Пожарскому обращено к площади, к народу, здесь оно находит свое смысловое завершение. Таким образом мы видим, что в природе все находится в равновесии: есть покой и движение, а значит симметрия и асимметрия, которые только дополняют друг друга и делают наш мир гармоничным.

Виды симметрии Центральная Осевая Зеркальная

Осевая симметрия Симметрия (соразмерность) две зеркально одинаковых части с обеих сторон мысленно проведенной средней линии. Соразмерными считаются части, кажущиеся одинаковыми с обеих сторон оси симметрии только по своему оптическому действию (например, повторяющиеся формы с небольшими отклонениями размеров). Асимметричными соответственно будут те формы, которые неодинаковы (различно образованы) с обеих сторон средней линии.Симметрия (соразмерность) две зеркально одинаковых части с обеих сторон мысленно проведенной средней линии. Соразмерными считаются части, кажущиеся одинаковыми с обеих сторон оси симметрии только по своему оптическому действию (например, повторяющиеся формы с небольшими отклонениями размеров). Асимметричными соответственно будут те формы, которые неодинаковы (различно образованы) с обеих сторон средней линии.

Зеркальная симметрия Геометрическая фигура называется симметричной относительно плоскости S ( рис.104 ), если для каждой точки E этой фигуры может быть найдена точка E этой же фигуры, так что отрезок EE перпендикулярен плоскости S и делится этой плоскостью пополам ( EA = AE ). Плоскость S называется плоскостью симметрии. Симметричные фигуры, предметы и тела не равны друг другу в узком смысле слова ( например, левая перчатка не подходит для правой руки и наоборот ). Они называются зеркально равными.Геометрическая фигура называется симметричной относительно плоскости S ( рис.104 ), если для каждой точки E этой фигуры может быть найдена точка E этой же фигуры, так что отрезок EE перпендикулярен плоскости S и делится этой плоскостью пополам ( EA = AE ). Плоскость S называется плоскостью симметрии. Симметричные фигуры, предметы и тела не равны друг другу в узком смысле слова ( например, левая перчатка не подходит для правой руки и наоборот ). Они называются зеркально равными.

Центральная симметрия Геометрическая фигура ( или тело ) называется симметричной относительно центра C ( рис.105 ), если для каждой точки A этой фигуры может быть найдена точка E этой же фигуры, так что отрезокГеометрическая фигура ( или тело ) называется симметричной относительно центра C ( рис.105 ), если для каждой точки A этой фигуры может быть найдена точка E этой же фигуры, так что отрезок AE проходит через центр C и делится в этой точке пополам ( AC = CE ). Точка C называется центром симметрии.AE проходит через центр C и делится в этой точке пополам ( AC = CE ). Точка C называется центром симметрии.

Симметрия вращения. Тело ( фигура ) обладает симметрией вращения ( рис.106 ), если при повороте на угол 360°/n ( здесь n – целое число ) вокруг некоторой прямой AB ( оси симметрии ) оно полностью совпадает со своим начальным положением. При n = 2 мы имеем осевую симметрию. Треугольники ( рис.105 ) имеют также осевую симметрию

Симметрия плоских фигур Зеркально-осевая симметрия. Если плоская фигура ABCDE ( рис.107 ) симметрична относительно плоскости S ( что возможно, если только плоская фигура перпендикулярна плоскости S ), то прямая KL, по которой эти плоскости пересекаются, является осью симметрии второго порядка фигуры ABCDE. В этом случае фигура ABCDE называется зеркально- симметричнойЗеркально-осевая симметрия. Если плоская фигура ABCDE ( рис.107 ) симметрична относительно плоскости S ( что возможно, если только плоская фигура перпендикулярна плоскости S ), то прямая KL, по которой эти плоскости пересекаются, является осью симметрии второго порядка фигуры ABCDE. В этом случае фигура ABCDE называется зеркально- симметричной

Симметрия в искусстве