Исследование функций с помощью производной Алгебра и начала анализа 11 класс. Выполнила: Батина Лариса Владимировна, учитель МОУ СОШ 2.

Презентация:



Advertisements
Похожие презентации
Учитель математики Косач Л.Н. МБОУ СОШ 1 имени Чернявского Якова Михайловича.
Advertisements

УПРАЖНЕНИЕ 1 УПРАЖНЕНИЕ 1 для устного счёта по теме: Авторы: учителя математики ГБОУ СОШ 2 с углубленным изучением отдельных предметов г.о. Кинель Авторы:
1)х% от а a·0,01х Задача:. 2) b – это х% от а а = b:(0,01х) Задача:
1.Изучить графический метод решения задач с параметрами. 2.Сформировать навыки решения задач с параметрами данным способом. 3.Развитие интеллекта. Цель.
Тема: «Решение нестандартных показательных уравнений». Умение решать задачи – практическое искусство, подобное плаванию, или катанию на лыжах, или игре.
Тема урока: Перпендикулярные прямые в пространстве. Решение задач.
Урок алгебры в 9 классе. Тема: «Графический способ решения систем уравнений».
Урок алгебры и начал анализа 10 класс Учитель 65-ой школы 10 класс Учитель 65-ой школы.
х + х(1+1/2+1/4+…) – 8 < 0. Имеем, S = 1: (1-1/2) = 2, тогда неравенство примет вид: х - 2 х - 8 < 0. Рассмотрев функцию у = х - 2 х - 8, график которой.
1.Говорят, что математика – царица всех наук, а царица математики… а) геометрия, б) арифметика, в) алгебра. 2. Наука о числах, их свойствах называется…
Черноусовой Р.В учитель МБОУ Сорокинская СОШ Красногвардейского р-на 2011 год. Применение производной к исследованию функции.
Вычислите: Решите уравнение: 1. Решите уравнение:
Исследование функций Применение производной к исследованию функций.
Неравенства с параметрами. Метод областей. Работу выполнила: Ильюшенко Г.М. МОУ СОШ 23.
y X Построение графика функции, по графику 0 0 X = - 5 x = 7.
Свойства производной. Построение графиков функций. (Повторение материала 10 класса).
Применения производной к исследованию функций Задание для устного счета Упражнение 3 11 класс.
СХЕМА ИССЛЕДОВАНИЯ ФУНКЦИИ С ПОМОЩЬЮ ПРОИЗВОДНОЙ 1.Найти область определения функции. 2.Выяснить, является ли функция чётной или нечётной, периодической.
Р ЕШЕНИЕ ЗАДАЧ НА ПРОЦЕНТЫ.. Умение решать задачи – практическое искусство, подобное плаванию, или катанию на лыжах, или игре на фортепиано: научиться.
х + х(1+1/2+1/4+…) – 8 < 0. Имеем, S = 1: (1-1/2) = 2, тогда неравенство примет вид: х - 2х - 8 < 0. Рассмотрев функцию у = х - 2х - 8, график которой.
Транксрипт:

Исследование функций с помощью производной Алгебра и начала анализа 11 класс. Выполнила: Батина Лариса Владимировна, учитель МОУ СОШ 2.

Умение решать задачи – практическое искусство, подобное плаванию, или катанию на лыжах, или игре на фортепиано: научиться этому можно, лишь подражая избранным образцам и постоянно тренируясь. Д.Пойа

Вопросы для повторения: 1.Основные свойства функций. 1.Основные свойства функций. 2.Характерные точки графиков. 2.Характерные точки графиков. 3.Построение графиков функций. 3.Построение графиков функций. 4.Конструирование рациональной 4.Конструирование рациональной дроби. дроби.

Домашняя контрольная работа 1вариант 2 вариант 1вариант 2 вариант Найдите точки экстремума и определите их характер: Найдите точки экстремума и определите их характер: 885(а) 885(б) 885(а) 885(б) Исследуйте функцию и постройте ее график: Исследуйте функцию и постройте ее график: 896(а) 896(б) 896(а) 896(б) При каких значениях параметра а уравнение имеет один корень, два корня? При каких значениях параметра а уравнение имеет один корень, два корня? 929(а) 929(б) 929(а) 929(б)

Ответить на вопросы: На промежутке (0;2) y'(x)>0, на промежутке (2;3) y'(x) 0, на промежутке (2;3) y'(x)

На рисунках представлены графики производных. Назвать точки экстремумов.