Гамма-излучение Работу выполнили: Кузора Пётр и Кузора Георгий.

Презентация:



Advertisements
Похожие презентации
«Гамма- излучение». Гамма-излучение – это коротковолновое электромагнитное излучение. На шкале электромагнитных волн оно граничит с жестким рентгеновским.
Advertisements

Гамма-излучение (гамма-лучи, γ-лучи) вид электромагнитного излучения с чрезвычайно малой длиной волны < 5×10 3 нм и, вследствие этого, ярко выраженными.
ГАММА-ИЗЛУЧЕНИЕ Занин Александр, Залилеев Георгий 113 класс. Лицей 3.
Открытие радиоактивности.
Ученица 9 класса Дунисова Галина. Гамма-излучение (гамма-лучи, γ-лучи) вид электромагнитного излучения с чрезвычайно малой длиной волны < 5×10 3 нм и,
Электромагнитные излучения Презентация ученицы 11 «А» класса Очеретиной Александры.
РАДИОАКТИВНОСТЬ - – превращение атомных ядер в другие ядра, сопровождающееся испусканием различных частиц и электромагнитного излучения.
Радиоактивность - явление испускания атомами невидимых проникающих излучений Радиоактивность - явление испускания атомами невидимых проникающих излучений.
Обобщение Атомная физика. По кодификатору : Планетарная модель атома Постулаты Бора Линейчатые спектры Лазер.
Синхротронное излучение в диагностике наносистем 4-й курс 8-й семестр 2007/2008 Лекция 2.
Открытие радиоактивности Нестабильность атомов была открыта в конце XIX века. Спустя 46 лет был построен первый атомный реактор.
Радиоактивное излучение Работа ученицы 9-А класса Лукьяновой Ирины.
Физическая природа радиоактивного излучения. История Явление радиоактивности было открыто в 1896 году французским физиком А. Беккерелем Явление радиоактивности.
ИОНИЗИРУЮЩИЕ ИОНИЗИРУЮЩИЕИЗЛУЧЕНИЯ Исмоилов Мухамадазиз 156 группа 1.
РАДИОАКТИВНОСТЬ урок физики 11 класс. Открытие рентгеновских лучей дало толчок новым исследованиям. Их изучение привело к новым открытиям, одним из которых.
Электромагнитные излучения небесных тел. Электромагнитное излучение небесных тел основной источник информации о космических объектах. Исследуя электромагнитное.
СВЕДЕНИЯ ОБ АВТОРЕ. Фамилия, имя, отчество : Мащенко Пётр Степанович Должность : учитель физики Адрес : Краснодарский край, станица Старощербиновская,
ФИЗИКА. 11 класс. Учитель МОУ СОШ Пионерский Васильева Е.Д.
Гамма-излучение. Гамма-излучение открыто в 1910 г. Генри Брэггом.
Транксрипт:

Гамма-излучение Работу выполнили: Кузора Пётр и Кузора Георгий

В области открытия гамма-лучей одно из первых мест принадлежит англичанину Эрнесту Резерфорду. Резерфорд задался целью не просто открывать новые излучающие вещества. Он хотел выяснить, что же представляют собой их лучи. Он правильно предположил, что в этих лучах могут встретиться заряженные частицы. А они отклоняются в магнитном поле. В 1898 году Резерфорд преступил к исследованию уранового излучения, результаты которого были опубликованы в 1899 году в статье « Излучение урана и созданная им электропроводность ». Резерфорд пропустил сильный пучок лучей радия между полюсами мощного магнита. И его предположения оправдались.

Излучение регистрировалось по действию на фотопластинку. Пока не было магнитного поля, на пластинке появилось одно пятно от падавших на нее лучей радия. Но вот пучок прошел через магнитное поле. Теперь он как бы распался на части. Один луч отклонился влево, другой – вправо. Отклонение лучей в магнитном поле ясно указало, что в состав излучения входят заряженные частицы; по этому отклонению можно было судить и о знаке частиц. По двум первым буквам греческого алфавита и назвал Резерфорд две составные части излучения радиоактивных веществ. Альфа-лучи ( ) – часть излучения, отклонявшаяся, как отклонялись бы положительные частицы. Отрицательные частицы были обозначены буквой бета ( ). А в 1900 году в излучении урана Вилларом была открыта еще одна составляющая, которая не отклонялась в магнитном поле и обладала наибольшей проникающей способностью, она была названа гамма-лучами ( ). Это, как оказалось, были «частицы» электромагнитного излучения – так называемые гамма- кванты. Гамма-излучение, коротковолновое электромагнитное излучение. На шкале электромагнитных волн оно граничит с жёстким рентгеновским излучением, занимая весь диапазон частот >3*10 20 Гц, что соответствует длинам волн

Гамма-излучение возникает при распадах радиоактивных ядер, элементарных частиц, при аннигиляции пар частица-античастица, а также при прохождении быстрых заряженных частиц через вещество.Гамма-излучение, сопровождающее распад радиоактивных ядер, испускается при переходах ядра из более возбуждённого энергетического состояния в менее возбуждённое или в основное. Испускание ядром гамма-кванта не влечёт за собой изменения атомного номера или массового числа, в отличие от др. видов радиоактивных превращений. Ширина линий гамма-излучение обычно чрезвычайно мала (~10 -2 эв). Поскольку расстояние между уровнями во много раз больше ширины линий, спектр гамма- излучений является линейчатым, т.е. состоит из ряда дискретных линий. Изучение спектров гамма-излучения позволяет установить энергии возбуждённых состояний ядер.

Источником гамма-излучения является изменение энергетического состояния атомного ядра, а также ускорение свободно заряженных частиц.Гамма-кванты с большими энергиями испускаются при распадах некоторых элементарных частиц. Так, при распаде покоящегося p°-мезона возникает гамма-излучение с энергией ~70 Мэв. гамма-излучение от распада элементарных частиц также образует линейчатый спектр. Однако испытывающие распад элементарные частицы часто движутся со скоростями, сравнимыми со скоростью света. Вследствие этого возникает доплеровское уширение линии и спектр гамма-излучение оказывается размытым в широком интервале энергии. Гамма-излучение, образующееся при прохождении быстрых заряженных частиц через вещество, вызывается их торможением в кулоновском поле атомных ядер вещества. Тормозное гамма-излучение, так же как и тормозное рентгеновское излучение, характеризуется сплошным спектром, верхняя граница которого совпадает с энергией заряженной частицы, например электрона. В межзвёздном пространстве гамма-излучение может возникать в результате соударений квантов более мягкого длинноволнового электромагнитного излучения, например света, с электронами, ускоренными магнитными полями космических объектов. При этом быстрый электрон передаёт свою энергию электромагнитному излучению и видимый свет превращается в более жёсткое гамма- излучение. Аналогичное явление может иметь место в земных условиях при столкновении электронов большой энергии, получаемых на ускорителях, с фотонами видимого света в интенсивных пучках света, создаваемых лазерами. Электрон передаёт энергию световому фотону, который превращается в гамма-квант. Можно на практике превращать отдельные фотоны света в кванты гамма-излучения высокой энергии.

Гамма-излучение обладает большой проникающей способностью, т. е. может проникать сквозь большие толщи вещества без заметного ослабления. Оно проходит сквозь метровый слой бетона и слой свинца толщиной несколько сантиметров.

Основные процессы, происходящие при взаимодействии гамма-излучения с веществом: фотоэлектрическое поглощение (фотоэффект), комптоновское рассеяние (комптон-эффект) и образование пар электрон- позитрон. При фотоэффекте происходит поглощение гамма-кванта одним из электронов атома, причём энергия гамма-кванта преобразуется за вычетом энергии связи электрона в атоме в кинетическую энергию электрона, вылетающего за пределы атома. Вероятность фотоэффекта прямо пропорциональна 5-й степени атомного номера элемента и обратно пропорциональна 3-й степени энергии гамма-излучения. При комптон-эффекте происходит рассеяние g-кванта на одном из электронов, слабо связанных в атоме, В отличие от фотоэффекта, при комптон-эффекте гамма-квант не исчезает, а лишь изменяет энергию (длину волны) и направление распространения. Узкий пучок гамма-лучей в результате комптон-эффекта становится более широким, а само излучение - более мягким (длинноволновым). Интенсивность комптоновского рассеяния пропорциональна числу электронов в 1 см 3 вещества, и поэтому вероятность этого процесса пропорциональна атомному номеру вещества. Комптон-эффект становится заметным в веществах с малым атомным номером и при энергиях гамма-излучения, превышающих энергию связи электронов в атомах.Если энергия гамма-кванта превышает 1,02 Мэв, становится возможным процесс образования электрон-позитронных пар в электрическом поле ядер. Вероятность образования пар пропорциональна квадрату атомного номера и увеличивается с ростом hv. Поэтому при hv ~ 10 основным процессом в любом веществе оказывается образование пар. Обратный процесс аннигиляции электрон-позитронной пары является источником гамма-излучения. Почти все -излучение, приходящие на Землю из космос, поглощается атмосферой Земли. Это обеспечивает возможность существования органической жизни на Земле. -Излучение возникает при взрыве ядерного оружия вследствие радиоактивного распада ядер.

Гамма-излучение находит применение в технике, например для обнаружения дефектов в металлических деталях – гамма-дефектоскопия. В радиационной химии гамма-излучение применяется для инициирования химических превращений, например процессов полимеризации. Гамма-излучение используется в пищевой промышленности для стерилизации продуктов питания. Основными источниками гамма-излучения служат естественные и искусственные радиоактивные изотопы, а также электронные ускорители. Действие на организм гамма-излучения подобно действию других видов ионизирующих излучений. Гамма-излучение может вызывать лучевое поражение организма, вплоть до его гибели. Характер влияния гамма- излучения зависит от энергии γ-квантов и пространственных особенностей облучения, например, внешнее или внутреннее. Гамма-излучение используется в медицине для лечения опухолей, для стерилизации помещений, аппаратуры и лекарственных препаратов. Гамма-излучение применяют также для получения мутаций с последующим отбором хозяйственно-полезных форм. Так выводят высокопродуктивные сорта микроорганизмов (например, для получения антибиотиков ) и растений.