Решение логических задач при помощи построения трехмерной таблицы Автор: Алия Батырова ученица 10 класса МОУ-СОШ с. Кировское.

Презентация:



Advertisements
Похожие презентации
РЕШЕНИЕ ЗАДАЧИ НА СМЕКАЛКУ. ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА ПО МАТЕМАТИКЕ. Выполнил : Андрющенко Дмитрий ученик 9 B класса Научный руководитель : Овчарова Н.
Advertisements

Правила оформления таблицы Таблица типа «объекты-свойства» Таблицы типа «объекты-объекты-один» Вычислительные таблицы Решение логических задач ТАБЛИЧНЫЕ.
Решение логических задач. Логические функции одной переменной xF1F1 F2F2 F3F3 F4F
Тема: Прямоугольная система координат на плоскости x 0 y.
Методы решения систем линейных уравнений. Графический метод.
«Математика в загадочных историях» Автор Корбу Наталья Александровна МОУ Средняя общеобразовательная школа 7 города Новокуйбышевска Самарской области.
Линейная функция Урок обобщения (урок подготовки к контрольной работе) МБОУ «СОШ 25» г. Бийска Автор: Еремеева М.В г.
Разработан учителем математики МОУ Гимназии 5 г. Морозовска Ростовской области Савиной Н. Б.
Пример 1. Однажды Артеке за круглым столом оказался пятеро ребят из Москвы, Санкт-Петербурга, Новгорода, Перми и Томска: Юра, Толя, Леша, Коля и Витя.
§ 2.6. Табличное решение логических задач § 2.6. Табличное решение логических задач Информатика 7 класс.
Решение логических задач табличным способом. Задача 1 Света, Марина, Андрей, Кирилл и Юра держат домашних животных. У каждого либо кошка, либо собака,
Прямая а параллельна. Верно ли, что эта прямая: а) не пересекает ни одну прямую, лежащую в плоскости ; б) параллельна некоторой прямой, лежащей в плоскости.
Параллельное проектирование Таким образом, каждой точке A пространства сопоставляется ее проекция A' на плоскость π. Это соответствие называется параллельным.
ГЛАВА 3 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. §1. Прямая на плоскости. Различные виды уравнений прямой на плоскости. Пусть имеется прямоугольная система координат.
Методы решения логических задач Теория, мой друг, суха, но зеленеет жизни древо. И. В. Гете.
Структура таблицы ПРОГРАФКА СТРОКИ ГРАФЫ (СТОЛБЦЫ) ЗАГОЛОВОК
Работу выполнил ученик 10 «А» класса Медведев Алексей Параллельность прямых, прямой и плоскости в пространстве.
Параллельность прямой и плоскости. Возможны три случая взаимного расположения прямой и плоскости в пространстве Прямая лежит в плоскости; Прямая и плоскость.
Тема: « Задачи на построение сечений». Автор работы: Янаева Ольга Николаевна, учитель математики МБУ гимназии 35 г.о. Тольятти.
Графический способ решения систем уравнений 9 класс.
Транксрипт:

Решение логических задач при помощи построения трехмерной таблицы Автор: Алия Батырова ученица 10 класса МОУ-СОШ с. Кировское

Логические задачи на приведение во взаимно - однозначное соответствие элементов трех множеств удобно решать с помощью трехмерной таблицы.

Рассмотрим этот алгоритм на примере решения следующей логической задачи.

Задача Маша, Лида, Женя и Катя играют на разных инструментах – баяне, рояле, гитаре, скрипке, но каждая на одном. Они же владеют иностранными языками – английским, французским, немецким, испанским, но каждая одним.

Задача Девушка, играющая на гитаре, говорит по-испански. Ни Лида, ни Маша не играют на скрипке и баяне, не знают английского языка. Девушка, которая говорит по-немецки, не играет на баяне. Женя знает французский язык, но не играет на скрипке.

Кто играет на каком инструменте и каким иностранным языком владеет?

РЕШЕНИЕ ЗАДАЧИ

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ А Ф Н И Строится пространственная система координат XYZ*, на осях проставляются названия множеств* и элементы этих множеств*. Б Р Г С ЛЖКМ ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛЖКМ Б Р Г С А Ф Н И Читается условие задачи*. ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛЖКМ Б Р Г С А Ф Н И Если пара элементов в двух множествах находится в соответствии, то точка, лежащая на пересечении соответствующих прямых, становится центром темного кружка, в противном случае - белого кружка*. ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛЖКМ Б Р Г С А Ф Н И Девушка, играющая на гитаре*, говорит по-испански*. ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛЖКМ Б Р Г С Ф Н И Ни Лида, ни Маша* не играют на скрипке* и баяне*, не знают английского языка*. А ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛЖКМ Р Г С А Ф Н И Девушка, которая говорит по-немецки*, не играет на баяне*. Б ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛКМ Б Р Г С А Н И Женя* знает французский язык*, но не играет на скрипке*. Ф Ж ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛКМ Б Р Г С А Н И Применяется правило экстраполяции*. Ф Ж ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛКМ Б Р Г С А Н И «Тёмная» экстраполяция. Если на горизонтали (вертикали) все фигуры, кроме одной, светлые*, то свободная занимается тёмной фигурой*. Ф Ж ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛКМ Б Р Г С А Н И «Светлая» экстраполяция. Если на горизонтали (вертикали) имеется «тёмная» фигура*, то все остальные фигуры на ней - светлые*. Ф Ж ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛКМ Б Р Г С А Н И Повторяются правила «светлой» и «темной» экстраполяций, пока это возможно*. Ф Ж ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛКМ Б Р Г С А Н И К темной фигуре, находящейся на пересечении элементов Ж и Ф*, применим «светлую» экстраполяцию*. Ф Ж ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛКМ Б Р Г С А Н И К темной фигуре, находящейся на пересечении элементов Г и И*, также применим «светлую» экстраполяцию*. Ф Ж ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛКМ Б Р Г С А Н И В результате «темной» экстраполяции в плоскости XY*, на пересечении элементов А и К, появится темная фигура*. Ф Ж ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛКМ Б Р Г С А Н И В плоскости XZ в результате «темной» экстраполяции*, на пересечении элементов Б и Ж появится темная фигура *. Ф Ж ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛКМ Б Р Г С А Н И В плоскости XY к темной фигуре, находящейся на пересечении элементов А и К*, применим «светлую» экстраполяцию*. Ф Ж ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛКМ Б Р Г С А Н И В плоскости XZ к темной фигуре, находящейся на пересечении элементов Б и Ж*, также применим «светлую» экстраполяцию*. Ф Ж ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛКМ Б Р Г С А Н И Правило множественного проектирования.* Ф Ж ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛКМ Р Г С А Н И «Темная» фигура* в своей плоскости проектируется на координатные оси*. Прямые, проведенные через проекции в двух других плоскостях*, раскрашиваются одинаково*. Ф ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка Б Ж

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛКМ Б Р Г С А Н И В плоскости YZ к «темной» фигуре, находящейся на пересечении элементов Ф и Б*, применим «светлую» экстраполяцию*. Ф Ж ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛКМ Б Р Г С А Н И Проектирование в плоскости YZ «темной» фигуры, находящейся на пересечении элементов И и Г*, не дает информации, так как прямые, проведенные через проекции в двух других плоскостях*, уже раскрашены одинаково*. Ф Ж ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛМ Б Р Г А Н И Применим проектирование к «темной» фигуре, находящейся на пересечении элементов К и С в плоскости XZ*. Ф Ж С К ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛМ Б Р Г А Н И Ф Ж С К В плоскости YZ повторим «темную»* и «светлую» экстраполяции*. ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛМ Б Р Г А Н И Ф Ж С К В сложившейся ситуации возможности экстраполяции и проектирования исчерпаны, а задача не решена… В таких случаях делается допущение о цвете фигуры в какой-либо свободной вершине сетки*. ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛМ Б Р Г А И Ф Ж С К Пусть точка, лежащая на пересечении элементов М и Н*, станет центром «темного» кружка*. Применим к ней «светлую» экстраполяцию*. ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка Н

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛМ Б Р Г А Н И Ф Ж С К В результате «темной» экстраполяции, на пересечении элементов Л и И*, появится «темная» фигура*. ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ Л Б Р Г А И Ф Ж С К В плоскости XY к «темной» фигуре, находящейся на пересечении элементов М и Н*, применим проектирование*. Н М ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ Л Б Р Г А И Ф Ж С К К точке, находящейся на пересечении элементов Л и И*, также применим правило проектирования*. Н М НН ММ НН ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ Л Б Р Г Ж С К Н М НН ММ Н И Ф Н А ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка При допущении о цвете фигуры в свободной вершине сетки мы не получили противоречий, поэтому можно считать, что задача решена верно*.

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ Б Р Г С Итак, мы узнали, что Маша играет на рояле и владеет немецким языком *, Лида играет на гитаре и знает испанский язык*, Женя играет на баяне и владеет французским языком*, Катя играет на скрипке и знает английский язык*. НННН И Ф Н А ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка М ЛЖ К

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛМ Б Р Г А Н И Ф Ж С К А теперь, чтобы проверить, не имеет ли данная задача двух верных решений, вернемся назад и предположим противное: пусть точка, лежащая на пересечении элементов М и Н*, станет центром не «темного», а светлого кружка*. ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛМ Б Р Г А Н И Ф Ж С К После применения правил экстраполяции и множественного проектирования, таблица заполнится следующим образом*. В заполненной таблице мы не видим противоречий, это означает, что полученное решение, тоже удовлетворяет заданным условиям*. ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ Б Р Г С Согласно второму решению, Маша играет на гитаре и владеет испанским языком *, Лида играет на рояле и знает немецкий язык*, Женя играет на баяне и владеет французским языком*, Катя играет на скрипке и знает английский язык*. НННН И Ф Н А ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка М ЛЖ К

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛЖКМ Б Р Г С Ф Н И При решении данной задачи нам не пришлось использовать правило множественной экстраполяции, которое заключается в следующем: если две (n) параллели в плоскости* одинаково светло раскрашены,* везде, за исключением двух (n) неокрашенных вершин*, то на двух (n) параллелях другого направления, проходящих через эти неокрашенные вершины*, вне данных прямых вставляются светлые фигуры*. А ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка

ИМЕНА ИНСТРУМЕНТЫ ЯЗЫКИ ЛЖКМ Б Р Г С Ф Н И А ИМЕНА М – Маша Л – Лида Ж – Женя К – Катя ЯЗЫКИ А – Английский Ф – Французский Н – Немецкий И – Испанский ИНСТРУМЕНТЫ Б – Баян Р – Рояль Г – Гитара С – Скрипка В некоторых задачах применение этого правила упрощает решение.

Задача После традиционного вечера встречи с выпускниками школы в стенгазете появилась заметка о трех наших бывших учениках. В ней было сказано, что Иван, Андрей и Борис стали учителями. Теперь они преподают разные дисциплины: один из них – математику, второй – физику, а третий – химию. Живут они тоже в разных городах: Минске, Витебске, Харькове. В заметке было также написано, что их первоначальные планы осуществились не полностью: 1) Иван живет не в Минске. 2) Андрей - не в Витебске. 3) Житель Минска преподает не математику. 4) Андрей преподает не физику. 5) Повезло только жителю Витебска: он преподает любимую им химию. Определите, кто где живет и что преподает? Эту задачу можно решить с помощью вышеизложенного метода.

Литература 1.Лыскова В.Ю., Ракитина Е.А. Логика в информатике. – М.: Лаборатория Базовых Знаний, Шапиро С.И. Решение логических и игровых задач (логико- психологические этюды). – М.: Радио и связь, 1984