Звезды – от рождения до смерти Этапы существования звёзд: 1.Туманность 2.Сжатое газовое облако 3.Протозвезда 4.Звезда типа Солнца 5.Красный гигант 6.Сбрасывание.

Презентация:



Advertisements
Похожие презентации
Эволюция звезд
Advertisements

ЭВОЛЮЦИЯ ЗВЕЗД. Вселенная состоит на 98% из звезд. Они же являются основным элементом галактики. «Звезды – это огромные шары из гелия и водорода, а также.
Солнце Солнце центральная и единственная звезда нашей Солнечной системы, вокруг которой обращаются другие объекты этой системы: планеты и их спутники,
Вселенная состоит на 98% из звезд. Они же являются основным элементом галактики. «Звезды – это огромные шары из гелия и водорода, а также других газов.
Рождение и эволюция звезд. Содержание 1.Рождение звезд 2.Жизнь звезды 3.Белые карлики и нейтронные дыры 4.Черные дыры 5.Гибель звезд.
МЛЕЧНЫЙ ПУТЬ Млечный Путь – это спиральная галактика, в которой насчитывается более 200 миллиардов звёзд. Основной диск галактики имеет толщину в 2000.
Сверхно́вые звёзды это звёзды, заканчивающие свою эволюцию в катастрофическом взрывном процессе.
Новые и Сверхновые Звёзды
Выполнила: Пузырёва Э.Э. ученица 11 класса. Руководитель: Бекетова Т.Г. учитель физики.
Эволюционные перемещения презентация
Наиболее очевидным свойством звезд является то, что они светятся, точнее, являются самосветящимися телами. За счет чего покрываются их энергетические.
Солнце центральная и единственная звезда нашей Солнечной системы, вокруг которой обращаются другие объекты этой системы: планеты и их спутники, карликовые.
Проект по теме: «Звезды»
Образование Галактик Лесенчук Мария, 11 класс, СОШ 50, г. Пермь, 2009г.
ТЕОРИЯ БОЛЬШОГО ВЗРЫВА
Как появилась Земля?. Цель: Узнать как появилась земля на свет. Открыть для себе что-то новое. Узнать гипотезы происхождения земли.
ЭВОЛЮЦИЯ ЗВЕЗД. Хотя по человеческой шкале времени звезды и кажутся вечными, они, подобно всему сущему в природе, рождаются, живут и умирают. Согласно.
ЭВОЛЮЦИЯ ЗВЕЗД. Вселенная состоит на 98% из звезд. Они же являются основным элементом галактики. «Звезды – это огромные шары из гелия и водорода, а также.
Введение (фото. Мл пути во весь экран, текст как титры) Обратим внимание на ночное небо. Перед нами открывается великолепная картина, автором которой.
Вселенная – это огромное пространство, заполненное планетами, звездами, галактиками, черными дырами, туманностями и т.д. Наша планета – это всего лишь.
Транксрипт:

Звезды – от рождения до смерти

Этапы существования звёзд: 1.Туманность 2.Сжатое газовое облако 3.Протозвезда 4.Звезда типа Солнца 5.Красный гигант 6.Сбрасывание внешних оболочек 7.Белый карлик

На звездном небе наряду со звез- дами имеются облака, состоящие из частиц газа и пыли ( водорода ). Некоторые из них настолько плотные, что начинают сжиматься под действием сил гравитационного притяжения. По мере сжатия газ нагревается и начинает излучать инфракрасные лучи. На этой стадии звезда называется ПРОТОЗВЕЗДОЙ Когда температура в недрах протозвезды достигнет 10 миллионов граду- сов, начинается термоядерная реакция превращения водорода в гелий, при этом протозвезда превращается в обычную звезду, излучающую свет. Звёзды среднего размера, такие как Солнце, светятся в среднем 10 миллиардов лет. Считается, что Солнце все ещё на ней, так как оно находится в середине своего жизненного цикла.

Протозвезда

Внутренне строение звезды

Весь водород в ходе термоядерной реакции превращается в гелий, образуется гелиевый слой. Если температура в гелиевом слое меньше 100 миллионов Кельвинов, дальнейшая термоядерная реакция превращения ядер гелия в ядра азота и углерода не происходит, термоядерная реакция происходит не в центре звезды, а только в водородном слое, прилегающем к гелиевому слою, при этом температура внутри звезды постепенно увеличивается. Когда температура достигает 100 миллионов Кельвинов начинается термоядерная реакция в гелиевом ядре, при этом ядра гелия превращаются в ядра углерода, азота и кислорода. Светимость и размеры звезды увеличиваются, обычная звезда становится красным гигантом или сверхгигантом. Околозвездная оболочка звезд, масса которых не больше 1,2 массы Солнца, постепенно расширяется и в конце концов отрывается от ядра, а звезда превращается в белого карлика, который постепенно остывает и затухает. Если масса звезды примерно вдвое больше массы Солнца, то такие звезды в конце жизни становятся неустойчивыми и взрываются, становятся сверхновыми звездами, а затем превращаются в нейтронные звезды или черную дыру.

Красный гигант

В конце своей жизни красный гигант превращается в белый карлик. Белый карлик – это сверхплотное ядро красного гиганта, состоящее из гелия, азота, кислорода, углерода и железа. Белый карлик сильно сжат. Радиус его составляет примерно 5000 км, то есть он по размерам примерно равен нашей Земле. При этом плотность его составляет около 4×10 6 г/см 3, то есть весит такое вещество в четыре миллиона больше, чем вода на Земле. Температура на его поверхности – 10000К. Белый карлик очень медленно остывает и остаётся существовать вплоть до скончания мира.

Белый карлик

Взрыв Красного гиганта

Сверхновой называется звезда в момент завершения своей эволюции в ходе гравитационного коллапса. Образованием сверхновой заканчивается существование звезд с массой выше 8-10 солнечных масс. На месте гигантского взрыва сверхновой остается нейтронная звезда или чёрная дыра, а вокруг этих объектов некоторое время наблюдаются остатки оболочек взорвавшейся звезды. Взрыв сверхновой звезды в нашей Галактике - явление довольно редкое. В среднем такое случается раз или два в сто лет, поэтому очень нелегко застать то мгновение, когда звезда испускает энергию в космическое пространство и вспыхивает в эту секунду как миллиарды звезд.

Экстремальные силы, возникающие при формировании нейтронной звезды, так сжимают атомы, что электроны, вдавленные в ядра, объединяются с протонами, образуя нейтроны. Таким образом рождается звезда, почти полностью состоящая из нейтронов. Сверхплотная ядерная жидкость, если ее принести на Землю, взорвалась бы, подобно ядерной бомбе, но в нейтронной звезде она устойчива благодаря огромному гравитационному давлению. Однако во внешних слоях нейтронной звезды (как, впрочем, и всех звезд) давление и температура падают, образуя твердую корку толщиной около километра. Как полагают, состоит она в основном из ядер железа.

Нейтронная звезда

Пульсары – вращающиеся нейтронные звезды

Черные дыры Согласно нашим нынешним представлениям об эволюции звезд, когда звезда с массой, превышающей примерно 30 масс Солнца, гибнет со вспышкой сверхновой, внешняя ее оболочка разлетается, а внутренние слои стремительно обрушиваются к центру и образуют черную дыру на месте израсходовавшей запасы топлива звезды. Изолированную в межзвездном пространстве черную дыру такого происхождения выявить практически невозможно, поскольку она находится в разреженном вакууме и никак не проявляет себя в плане гравитационных взаимодействий. Однако, если такая дыра входила в состав двойной звездной системы (две горячих звезды, обращающихся по орбите вокруг их центра масс), черная дыра будет по-прежнему оказывать гравитационное воздействие на парную ей звезду.эволюции звезд В двойной системе с черной дырой вещество «живой» звезды будет неизбежно «перетекать» в направлении черной дыры. При подходе к роковой границе, засасываемое в воронку черной дыры вещество будет неизбежно уплотняться и разогреваться в силу учащения соударений между поглощаемыми дырой частицами, пока не разогреется до энергий излучения волн в рентгеновском диапазоне. Астрономы могут измерить периодичность изменения интенсивности рентгеновского излучения такого рода и вычислить, сопоставив ее с другими доступными данными, примерную массу объекта, «перетягивающего» на себя материю. Если масса объекта превышает предел Чандрасекара (1,4 массы Солнца), этот объект не может являться белым карликом, в которого суждено выродиться нашему светилу. В большинстве выявленных случаев наблюдения подобных двойных рентгеновских звезд массивным объектом является нейтронная звезда. Однако насчитано уже более десятка случаев, когда единственным разумным объяснением является присутствие в двойной звездной системе черной дыры.предел Чандрасекара

Черная звезда

Поглощение звезды черной дырой ( компьютерная модель)

Образование сверхновой звезды

В ходе термоядерных реакций, протекающих в недрах звезды почти в течение всей её жизни, водород превращается в гелий. После того как значительная часть водорода превратится в гелий, температура в её центре возрастает. При увеличении температуры примерно до 200 млн. К ядерным горючим становится гелий, который затем превращается в кислород и неон. Температуры в центре звезды постепенно увеличивается до до 300 млн. К. Но даже при столь высоких температурах кислород и неон вполне устойчивы и не вступают в ядерные реакции. Однако через некоторое время температура удваивается, теперь она уже равняется 600 млн. К. И тогда ядерным топливом становится неон, который в ходе реакций превращается в магний и кремний. Образование магния сопровождается выходом свободных нейтронов. Свободные нейтроны, вступая в реакцию с этими металлами, создают атомы более тяжёлых металлов - вплоть до урана - самого тяжёлого из природных элементов.

Но вот израсходован весь неон в ядре. Ядро начинает сжиматься, и снова сжатие сопровождается ростом температуры. Наступает следующий этап, когда каждые два атома кислорода, соединяясь, порождают атом кремния и атом гелия. Атомы кремния, соединяясь попарно, образуют атомы никеля, которые вскоре превращаются в атомы железа. В ядерные реакции, сопровождающиеся возникновением новых химических элементов, вступают не только нейтроны, но также протоны и атомы гелия. Появляются такие элементы, как сера, алюминий, кальций, аргон, фосфор, хлор, калий. При температурах 2-5 млрд. К рождаются титан, ванадий, хром, железо, кобальт, цинк, и др. Но из всех этих элементов наиболее представлено железо.

Своим внутренним строением звезда теперь напоминает луковицу, каждый слой которой заполнен преимущественно каким-либо одним элементом. С образованием железа звезда оказывается накануне драматического взрыва. Ядерные реакции, протекающие в железном ядре звезды, приводят к превращению протонов в нейтроны. При этом испускаются потоки нейтрино, уносящие с собой в космическое пространство значительное количество энергии звезды. Если температура в ядре звезды велика, то эти энергетические потери могут иметь серьёзные последствия, так как они приводят к снижению давления излучения, необходимого для поддержания устойчивости звезды. И как следствие этого, в действие опять вступают гравитационные силы, призванные доставить звезде необходимую энергию. Силы гравитации всё быстрее сжимают звезду, восполняя энергию, унесённую нейтрино.

Как и прежде сжатие звезды сопровождается ростом температуры, которая в конце концов достигает 4-5 млрд. К. Теперь события развиваются несколько иначе. Ядро, состоящее из элементов группы железа, подвергается серьёзным изменениям: элементы этой группы уже не вступают в реакции с образованием более тяжёлых элементов, а распадаются с превращением в гелий, испуская при этом колоссальный поток нейтронов. Большая часть этих нейтронов захватывается веществом внешних слоёв звезды и участвует в создании тяжёлых элементов. На этом этапе звезда достигает критического состояния. Когда создавались тяжёлые химические элементы, энергия высвобождалась в результате слияния лёгких ядер. Тем самым огромные её количества звезда выделяла на протяжении сотен миллионов лет. Теперь же конечные продукты ядерных реакций вновь распадаются, образуя гелий: звезда оказывается вынужденной восполнить утраченную ранее энергию

К взрыву готовится Бетельгейзе (c араб. «Дом Близнеца») – красный сверхгигант созвездия Ориона. Одна из крупнейших среди известных астрономам звезд. Если ее поместить вместо Солнца, то при минимальном размере она заполнила бы орбиту Марса, а при максимальном - достигала бы орбиты Юпитера. Объем Бетельгейзе почти в 160 млн. раз больше солнечного. И она одна из самых ярких – ее светимость в раз больше солнечной. Возраст ее – всего, по космическим меркам, около 10 миллионов лет.И вот этот раскаленный гигантский космический «чернобыль» уже находится на грани взрыва. Красный гигант уже начал агонизировать и уменьшаться в размерах. За время наблюдения с 1993 по 2009 год диаметр звезды уменьшился на 15 %, а сейчас она просто сжимается на глазах. Астрономы НАСА обещают, что при чудовищном взрыве яркость звезды увеличится в тысячи раз. Но из-за дальнего расстояния световых лет от нас – катастрофа никак не затронет нашу планету. А итогом взрыва станет образование сверхновой звезды.

Как будет выглядеть это редчайшее событие с земли? Внезапно в небе вспыхнет очень яркая звезда.. Продлится подобное космическое шоу около шести недель, что означает более полутора месяцев «белых ночей» в определенных участках планеты, остальные люди насладятся двумя-тремя дополнительными часами светового дня и восхитительным зрелищем взорвавшейся звезды ночью. Через две–три недели после взрыва звезда начнет угасать, а через несколько лет окончательно превратится для земного наблюдателя в туманность типа Крабовидной. Ну а волны заряженных частиц после взрыва дойдут до Земли через несколько столетий, и жители Земли получат небольшую (на 4–5 порядков меньше летальной) дозу ионизирующего излучения. Но волноваться не стоит в любом случае - как заявляют ученые, угрозы для Земли и ее жителей нет, а вот подобное событие само по себе уникально - последнее свидетельство наблюдения взрыва сверхновой на Земле датировано 1054 годом.

Cравнительные размеры звезд

Красный гигант Бетельгейзе готовится к взрыву