Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 10. Тема: Основные принципы комбинаторики. Цель: Ознакомиться с основными принципами комбинаторики, основными определениями комбинаторики и примерами задач на данную тему.
Комбинаторика Комбинаторика – раздел математики, посвященный подсчету количеств разных комбинаций элементов некоторого, обычно конечного, множества Комбинаторика возникла в XVI веке. Первоначально комбинаторные задачи касались в основном азартных игр. Одним из первых занялся подсчетом числа различных комбинаций при игре в кости итальянский математик Тарталья. Теоретическое исследование вопросов комбинаторики предприняли в XVII веке французские ученые Паскаль и Ферма. Дальнейшие развитие комбинаторики связано с именами Якова Бернулли, Лейбница и Эйлера.
Принципы комбинаторики Принцип сложения Основные принципы комбинаторики: Принцип сложения. Принцип умножения. Принцип сложения Задача 1: В классе 7 девочек и 8 мальчиков. Сколькими способами можно выбрать 1 человека для работы у доски? Решение: Для работы у доски мы можем выбрать девочку 7 способами или мальчика 8 способами. Общее число способов равно 7+8=15. Задача 2: В классе 7 человек имеют «5» по математике, 9 человек – «5» по истории, 4 человека имеют «5» и по математике и по истории. Сколько человек имеют пятерку по математике или по истории? Решение: Так как 4 человека входят и в семерку отличников по математике и в девятку отличников по истории, то сложив «математиков» и «историков», мы дважды учтем этих четверых, поэтому вычтя их один раз из суммы, получим результат 7+9-4=12. Итак, 12 человек имеют пятерку по математике или по истории.
Принцип сложения Принцип сложения 1: Если объект a можно получить n способами, объект b можно получить m способами и эти способы различны, то объект «a или b» можно получить n+m. Принцип сложения 2: Если объект a можно получить n способами, объект b можно получить m способами, то объект «a или b» можно получить n+m-k способами, где k – это количество повторяющихся способов.
Принцип умножения Задача: На вершину горы ведут 5 дорог. Сколькими способами можно подняться на гору и спуститься с нее? Решение: Для каждого варианта подъема на гору существует 5 вариантов спуска с горы. Значит всего способов подняться на гору и спуститься с нее 55=25. Принцип умножения: если объект a можно получить n способами, объект b можно получить m способами, то объект «a и b» можно получить mn способами.
Задачи 1) Из 10 коробок конфет, 8 плиток шоколада и 12 пачек печенья выбирают по одному предмету для новогоднего подарка. Сколькими способами это можно сделать? Решение. Коробку конфет можно выбрать 10 способами, шоколад – 8, печенье – 12 способами. Всего по принципу умножения получаем способов.
Задачи 2) В классе 24 человека. Из них 15 человек изучают английский язык, 12 – немецкий язык, 7 – оба языка. сколько человек не изучают ни одного языка? Решение. По принципу сложения 2 получим количество людей, изучающих английский или немецкий =20. Из общего числа учеников класса вычтем полученное количество людей =4. 4 человека не изучает ни одного языка
Задачи 1) Из двух спортивных обществ, насчитывающих по 20 боксеров каждое, надо выделить по одному боксеру для участия в состязаниях. Сколькими способами это можно сделать? Решение. По принципу умножения
Задачи 2) Сколькими способами можно выбрать гласную и согласную букву в слове «экзамен»? Решение. В слове «экзамен» 3 гласные буквы и 4 согласные. По принципу умножения
Задачи 3) В классе 20 человек, из них 9 человек изучают язык программирования Бейсик, и 8 человек изучают Паскаль. Сколько человек не изучают языки программирования, если известно, что других языков в этом классе не изучают и каждый человек знает не более одного языка программирования? Решение. По принципу сложения получим, что 9+8=17 человек изучают языки программирования =3 человека не изучают языки программирования.
Задачи 4) От дома до школы существует 6 маршрутов. Сколькими способами можно дойти до школы и вернуться, если дорога «туда» и «обратно» идет по разных маршрутам? Решение. По принципу умножения
Задачи 5) Из 3 экземпляров учебника алгебры, 5 экземпляров учебника геометрии и 7 экземпляров учебника истории нужно выбрать по одному экземпляру каждого учебника. Сколькими способами это можно сделать? Решение. По принципу умножения
Задачи 6) В корзине лежат 15 яблок и 10 апельсинов. Яша выбирает из нее яблоко или апельсин, после чего Полина берет яблоко и апельсин. В каком случае Полина имеет большую свободу выбора: если Яша взял яблоко или если он взял апельсин? Решение. Если Яша взял яблоко, то по принципу умножения Полина может осуществить свой выбор способами. Если Яша взял апельсин, то - способами. В первом случае у Полины свобода выбора большая.
Размещения Определение 1 Размещением из n элементов по k называется всякая перестановка из k элементов, выбранных каким-либо способом из данных n. Пример Дано множество. Составим все 2- размещения этого множества.
Число размещений Теорема 1 Число всех размещений из n элементов по k вычисляется по формуле Доказательство. Каждое размещение можно получить с помощью k действий: 1) выбор первого элемента n способами; 2) выбор второго элемента (n-1) способами; и т. д. k) выбор k –го элемента (n-(k-1))=(n-k+1) способами. По правилу умножения число всех размещений будет n(n-1)(n-2)…(n-k+1). Теорема доказана.
Число размещений Замечание. Формулу для числа размещений можно записать в виде Действительно
Пример Абонент забыл последние 3 цифры номера телефона. Какое максимальное число номеров ему нужно перебрать, если он вспомнил, что эти последние цифры разные? Решение. Задача сводится к поиску различных перестановок 3 элементов из 10 ( так как всего цифр 10). Применим формулу для числа перестановок.
Размещения с повторениями Определение 2 Размещением с повторением из n элементов по k называется всякая перестановка из k элементов, выбранных каким-либо способом из данных n элементов возможно с повторениями. Пример Дано множество Составим 2- размещения с повторениями:
Число размещений с повторениями Теорема 2. Число k- размещений с повторениями из n элементов вычисляется по формуле Доказательство. Каждый элемент размещения можно выбрать n способами. По правилу умножения число всех размещений с повторениями равно
Пример Сколько существует номеров машин? Решение. Считаем, что в трех буквах номера машины не используются буквы «й», «ы», «ь», «ъ», тогда число перестановок букв равно. Число перестановок цифр равно. По правилу умножения получим число номеров машин
Перестановки Определение 1 Перестановкой из n элементов называется всякий способ нумерации этих элементов Пример 1 Дано множество. Составить все перестановки этого множества. Решение.
Число перестановок Теорема 1. Число всех различных перестановок из n элементов равно n! Замечание. Например, Считают, что 0!=1 читается «n факториал» и вычисляется по формуле
Число перестановок Доказательство теоремы 1. Любую перестановку из n элементов можно получить с помощью n действий: 1)выбор первого элемента n различными способами, 2)выбор второго элемента из оставшихся (n-1) элементов, т.е. (n-1) способом, 3)выбор третьего элемента (n-2) способами, …… n) выбор n-го элемента 1 способом. По правилу умножения число всех способов выполнения действий, т.е. число перестановок, равно Теорема доказана.
Перестановки Число всех перестановок обозначается Итак, Пример В команде 6 человек. Сколькими способами они могут построиться для приветствия? Решение Число способов построения равно числу перестановок 6 элементов, т.е.
Перестановки с повторениями Теорема 2 Число перестановок n – элементов, в котором есть одинаковые элементы, а именно элементов i –того типа ( ) вычисляется по формуле где Доказательство. Так как перестановки между одинаковыми элементами не изменяют вид перестановки в целом, количество перестановок всех элементов множества нужно разделить на число перестановок одинаковых элементов.
Пример Задача: Сколько слов можно составить, переставив буквы в слове «экзамен», а в слове «математика»? Решение: В слове «экзамен» все буквы различны, поэтому используем формулу для числа перестановок без повторений В слове «математика» 3 буквы «а», 2 буквы «м», 2 буквы «т», поэтому число перестановок всех букв разделим на число перестановок повторяющихся букв:
Задачи 1)Сколькими способами можно составить список из 8 учеников, если у них различные инициалы? Решение Задача сводится к подсчету числа перестановок ФИО.
Задачи 2)Сколькими способами можно составить список 8 учеников, так, чтобы два указанных ученика располагались рядом? Решение Можно считать двоих указанных учеников за один объект и считать число перестановок уже 7 объектов, т.е. Так как этих двоих можно переставлять местами друг с другом, необходимо умножить результат на 2!
Задачи 3) Сколькими способами можно разделить 11 спортсменов на 3 группы по 4, 5 и 2 человека соответственно? Решение. Сделаем карточки: четыре карточки с номером 1, пять карточек с номером 2 и две карточки с номером 3. Будем раздавать эти карточки с номерами групп спортсменам, и каждый способ раздачи будет соответствовать разбиению спортсменов на группы. Таким образом нам необходимо посчитать число перестановок 11 карточек, среди которых четыре карточки с одинаковым номером 1, пять карточек с номером 2 и две карточки с номером 3.
Задачи 4) Сколькими способами можно вызвать по очереди к доске 4 учеников из 7? Решение. Задача сводится к подсчету числа размещений из 7 элементов по 4
Задачи 5)Сколько существует четырехзначных чисел, у которых все цифры различны? Решение. В разряде единиц тысяч не может быть нуля, т.е возможны 9 вариантов цифры. В остальных трех разрядах не может быть цифры, стоящей в разряде единиц тысяч (так как все цифры должны быть различны), поэтому число вариантов вычислим по формуле размещений без повторений из 9 по 3 По правилу умножения получим
Задачи 6)Сколько существует двоичных чисел, длина которых не превосходит 10? Решение. Задача сводится к подсчету числа размещений с повторениями из двух элементов по 10
Задачи 7)В лифт 9 этажного дома зашли 7 человек. Сколькими способами они могут распределиться по этажам дома? Решение. Очевидно, что на первом этаже никому не надо выходить. Каждый из 7 человек может выбрать любой из 8 этажей, поэтому по правилу умножения получим Можно так же применить формулу для числа размещений с повторениями из 8 (этажей) по 7(на каждого человека по одному этажу)
Задачи 8)Сколько чисел, меньше можно написать с помощью цифр 2,7,0? Решение. Так как среди цифр есть 0, то, например запись 0227 соответствует числу 227, запись 0072 соответствует числу 72, а запись 007 соответствует числу 7. Таким образом, задачу можно решить, используя формулу числа размещений с повторениями
Вопросы: Является ли перестановка – размещением? Сравнить выражения А и А Перечислите основные принципы комбинаторики. Сколькими способами могут совершить обмен 1 диска два студента, если у одного 7 дисков, а у другого 5?