Правильные многогранники Галиев Булат 10б класс
Определение: Выпуклый многогранник называется правильным, если все его грани равные правильные многоугольники и, кроме того, в каждой вершине сходится одинаковое число ребер.
Правильные многогранник и
Тетраэдр Тетраэдр составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников. Сумма плоских углов при каждой вершине равна 180 градусов. Таким образом, тетраэдр имеет 4 грани, 4 вершины и 6 ребер. Радиус описанной сферы: Радиус вписанной сферы: Площадь поверхности: Объем тетраэдра:
Октаэдр Октаэдр составлен из восьми равносторонних треугольников. Каждая его вершина является вершиной четырех треугольников. Сумма плоских углов при каждой вершине равна 240 градусов. Таким образом, октаэдр имеет 8 граней, 6 вершин и 12 ребер. Радиус описанной сферы: Радиус вписанной сферы: Площадь поверхности: Объем октаэдра:
Гексаэдр (Куб) Куб составлен из шести квадратов. Каждая его вершина является вершиной трех квадратов. Сумма плоских углов при каждой вершине равна 270 градусов. Таким образом, куб имеет 6 граней, 8 вершин и 12 ребер. Радиус описанной сферы: Радиус вписанной сферы: Площадь поверхности куба: Объем куба: S =6a 2 V =a 3
Додекаэдр Додекаэдр составлен из двенадцати равносторонних пятиугольников. Каждая его вершина является вершиной трех пятиугольников. Сумма плоских углов при каждой вершине равна 324 градусов. Таким образом, додекаэдр имеет 12 граней, 20 вершин и 30 ребер. Радиус описанной сферы: Радиус вписанной сферы: Площадь поверхности: Объем тетраэдра:
Икосаэдр Икосаэдр составлен из двадцати равносторонних треугольников. Каждая его вершина является вершиной пяти треугольников. Сумма плоских углов при каждой вершине равна 300 градусов. Таким образом икосаэдр имеет 20 граней, 12 вершин и 30 ребер. Радиус описанной сферы: Радиус вписанной сферы: Площадь поверхности: Объем октаэдра:
Название многогранника В (Вершины) Р (ребра) Г (грани) В + Г – Р = 2 (формула Эйлера) Вид грани Правильный тетраэдр 4642 правильный треугольник Правильный октаэдр правильный треугольник Правильный икосаэдр правильный треугольник Правильный гексаэдр квадрат Правильный додекаэдр правильный пятиугольник Свойства правильных многранников
Использование многогранников В искусстве В эпоху Возрождения большой интерес к формам правильных многогранников проявили скульпторы. архитекторы, художники. Леонардо да Винчи ( ) например, увлекался теорией многогранников и часто изображал их на своих полотнах. Он проиллюстрировал правильными и полуправильными многогранниками книгу Монаха Луки Пачоли ''О божественной пропорции.''
В архитектуре Во всем облике японского строения очевидна идея преобразования пространства, подчинения его новой логике - логике "завоевания" природного ландшафта, которому противопоставлена четкая геометрия проникающих архитектурных форм.
Царская гробница Великая пирамида в Гизе. Эта грандиозная Египетская пирамида является древнейшим из Семи чудес древности. Кроме того, это единственное из чудес, сохранившееся до наших дней. Во времена своего создания Великая пирамида была самым высоким сооружением в мире. И удерживала она этот рекорд, по всей видимости, почти 4000 лет.
Маяк Маяк был построен на маленьком острове Форос в Средиземном море, около берегов Александрии. Этот оживленный порт основал Александр Великий во время посещения Египта. Сооружение назвали по имени острова. На его строительство, должно быть, ушло 20 лет, а завершен он был около 280 г. до н.э., во времена правления Птолемея II, царя Египта.
Александрийский маяк В III веке до н.э. был построен маяк, чтобы корабли могли благополучно миновать рифы на пути в Александрийскую бухту. Ночью им помогало в этом отражение языков пламени, а днем - столб дыма. Это был первый в мире маяк, и простоял он 1500 лет.
Конец!Конец!