Презентацию выполнили Ученицы 9 «А» класса Средней школы 1980 Разук Юлия и Давидян Берта
Исторические задачи на геометрическую прогрессию.
Немного истории…
Сами по себе прогрессии известны так давно, что, конечно, нельзя говорить о том, кто их открыл. Это и понятно – ведь уже натуральный ряд 1, 2, 3, …, n,… есть арифметическая прогрессия с первым членом, равным 1, и разностью тоже равной 1. Что же касается геометрической прогрессии, то напомним: геометрической прогрессией называется последовательность, у которой любой член, кроме первого, является средним геометрическим двух соседних: Частное двух соседних членов геометрической прогрессии постоянно: q = bn + 1/bn. Это число называется знаменателем геометрической прогрессии, т. е. каждый член отличается от предыдущего в q раз. (Будем считать, что q 1, иначе все уж слишком тривиально). Нетрудно видеть, что общая формула n-го члена геометрической прогрессии bn = b1qn – 1; члены с номерами bn и bm отличаются в qn – m раз. Уже в Древнем Египте знали не только арифметическую, но и геометрическую прогрессию. Об этом свидетельствует приведенная ниже задача из папируса Райнда. Эта задача много раз с разными вариациями повторялась и у других народов в другие времена. Например, в написанной в XIII в. «Книге об абаке» Леонардо Пизанского (Фибоначчи) есть задача, в которой фигурируют 7 старух, направляющихся в Рим (очевидно, паломниц), у каждой из которых 7 мулов, на каждом из которых по 7 мешков, в каждом из которых по 7 хлебов, в каждом из которых по 7 ножей, каждый из которых в 7 ножнах. В задаче спрашивается, сколько всего предметов.
Задача Древнего Египта
«У семи лиц по семь кошек; каждая кошка съедает по семи мышей, каждая мышь съедает по семи колосьев, из каждого колоса может вырасти по семь мер ячменя. Как велики числа этого ряда и их сумма?» Решение задачи. Людей всего 7, кошек 7 2 = 49, они съедают всего 7 3 = 343 мыши, которые съедают всего 7 4 = 2401 колосьев, из них вырастает 7 5 = мер ячменя, в сумме эти числа дают Задача из папируса Райнда.
Задача о шахматах
Рассказывают, что индийский принц Сирам рассмеялся, услышав, какую награду попросил у него изобретатель : за первую клетку шахматной доски – одно зерно, за вторую – два, за третью –четыре, за четвертую – восемь и так далее до 64-го поля. Нетрудно сосчитать, используя формулу, что количество зерна, нужное для расплаты, составляет примерно 18,5*1018. Если бы принцу удалось засеять пшеницей площадь всей поверхности Земли, считая и моря, и океаны, и пустыни, и Арктику с Антарктикой, то получить удовлетворительный урожай, то за пять лет он смог бы рассчитаться с просителем. Такое количество зерен пшеницы можно собрать лишь с площади в 2000 раз большей поверхности Земли. Это превосходит количество пшеницы, собранной человечеством до нашего времени.
Старинные русские задачи
Некто продавал коня и просил за него 1000 рублей. Купец сказал, что за коня запрошена слишком большая цена. "Хорошо, - ответил продавец, - если ты говоришь, что конь дорого стоит, то возьми его себе даром, а заплати только за его гвозди в подковах. А гвоздей во всякой подкове по 6 штук. И будешь ты мне за них платить таким образом: за первый гвоздь, за второй гвоздь заплатишь две полушки, за третий гвоздь - четыре полушки, и так далее за все гвозди: за каждый в два раза больше, чем за предыдущий". Купец же, думая, что заплатит намного меньше, чем 1000 рублей, согласился. Проторговался ли купец, и если да, то насколько?
Решение задачи За 24 подковных гвоздя пришлось уплатить копеек. Сумма эта равна копеек, т.е. около 42 тысяч рублей. При таких условиях не обидно дать и лошадь в придачу.
Спасибо за внимание !