4.1. Кодирование числовой информации 4.1.1. Представление числовой информации с помощью систем счисления Для записи информации о количестве объектов используются.

Презентация:



Advertisements
Похожие презентации
Системы счисления. Содержание Введение Непозиционные системы счисления Непозиционные системы счисления Единичная Римская Позиционные системы счисления.
Advertisements

Кодирование числовой информации. Для записи информации о количестве объектов используются числа. Система счисления – это знаковая система, в которой числа.
Системы счисления. Содержание Введение Непозиционные системы счисления Непозиционные системы счисления Единичная Римская Позиционные системы счисления.
СЧИСЛЕНИЕ (нумерация), способ выражения и обозначения чисел. Система счисления это знаковая система, в которой числа записываются по определенным правилам.
СИСТЕМЫ СЧИСЛЕНИЯ Система счисления – это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита,
Система счисления – это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита, называемых цифрами.
Системы счисления. Все есть число", говорили пифагорийцы, подчеркивая необычайно важную роль чисел в практической деятельности. Известно множество способов.
Системы счисления Содержание : Системы счисления это... Системы счисления это... Системы счисления это... Системы счисления это... Виды систем счисления.
Кодирование числовой информации Системы счисления.
КОДИРОВАНИЕ ЧИСЛОВОЙ ИНФОРМАЦИИ. КОДИРОВАНИЕ ЧИСЛОВОЙ ИНФОРМАЦИИ.
Автор: Пророченко Ю.М.. Система счисления это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита,
СИСТЕМЫ СЧИСЛЕНИЯ Система счисления – это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита,
СИСТЕМЫ СЧИСЛЕНИЯ Система счисления – это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита,
Представление числовой информации с помощью систем счисления.
«Все есть число», говорили пифагорийцы, подчеркивая необычайно важную роль чисел в практической деятельности. Для представления чисел используются системы.
2009 год. Системой счисления называется способ представления числа символами некоторого алфавита, которые называются цифрами.Все системы счисления делятся.
Системы счисления Т.В.Осипова, МКОУ Нововоронежская СОШ 5.
Представление числовой информации с помощью систем счисления. Перевод чисел в позиционных системах счисления ТЕМА:
Ефимова Е.Н.школа 8401 Системы счисления Понятие о системах счисления. Исторические сведения. Урок 1.
Путешествие в историю чисел Выполнила ученица 6 класса Третьякова Анастасия Руководитель: учитель информатики Кулаева Н.А. с. Межениновка, декабрь 2011г.
Транксрипт:

4.1. Кодирование числовой информации Представление числовой информации с помощью систем счисления Для записи информации о количестве объектов используются числа. Числа записываются с использованием особых знаковых систем, которые называются системами счисления. Алфавит системы счисления состоит из символов, которые называются цифрами.

Система счисления это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита, называемых цифрами.

Все системы счисления делятся на две большие группы: позиционные и непозиционные. В позиционных системах счисления количественное значение цифры зависит от ее положения в числе, а в непозиционных не зависит

Непозиционные системы счисления. Как только люди начали считать, у них появилась потребность в записи чисел. Находки археологов на стоянках первобытных людей свидетельствуют о том, что первоначально количество предметов отображали равным количеством каких-либо значков: зарубок, черточек, точек. Такая система записи чисел называется единичной, так как любое число в ней образуется путем повторения одного знака, символизирующего единицу. Единичной системой счисления пользуются малыши, показывая на пальцах свой возраст или используя для этого счетные палочки. Примером непозиционной системы, которая сохранилась до наших дней, может служить римская система счисления, которая начала применяться более двух с половиной тысяч лет назад в Древнем Риме. В основе римской системы счисления лежат знаки I (один палец) для числа 1, V (раскрытая ладонь) для числа 5, X (две сложенные ладони) для числа 10, а для обозначения чисел 100, 500 и 1000 используются латинские буквы С, D и М. В римской системе счисления количественное значение цифры не зависит от ее положения в числе. Например, в римском числе XXX (30) цифра X встречается трижды и в каждом случае обозначает одну и ту же величину число 10, три раза по 10 в сумме дают 30.

Чтобы записать число в римской системе счисления, необходимо разложить его на сумму тысяч, полуты­ сяч, сотен, полусотен, десятков, пятков, единиц. На­ пример, десятичное число 28 представляется следую­щим образом: XXVIII = (два десятка, пяток, три единицы). При записи чисел в римской системе счисления при­ меняется правило: каждый меньший знак, поставленный слева от большего, вычитается из него, в остальных случаях знаки складываются. Например, римское число IX обозначает 9 ( ), а XI обозначает 11 (10 + 1). Число 99 имеет следующее представление в римской системе счисления: XCIX =

Позиционные системы счисления Каждая позиционная система счисления имеет определенный алфавит цифр и основание. Основание системы равно количеству цифр (зна­ков) в ее алфавите. В позиционных системах счисления количественное значение цифры зависит от ее позиции в числе. Позиция цифры в числе называется разрядом. Разряды числа возрастают справа налево, от младших разрядов к старшим, причем значения одинаковых цифр, стоящих в соседних разрядах числа, различаются на величину основания. В настоящее время наиболее распространенными пози­ ционными системами счисления являются десятичная и двоичная. Десятичная система счисления имеет алфавит цифр, который состоит из десяти всем известных, так назы­ваемых арабских цифр {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Алфавит двоичной системы две цифры {0, 1

Десятичная система счисления. В десятичной системе счисления цифра в крайней справа позиции обозначает единицы, цифра, смещенная на одну позицию влево, обозначает десятки, еще левее сотни, затем тысячи и т. д. Рассмотрим в качестве примера десятичное число 555. Циф­ра 5 встречается в числе трижды, причем самая правая обо­значает пять единиц, вторая справа пять десятков и, наконец, третья пять сотен. Выше десятичное число 555 было записано в привычной для нас свернутой форме. Мы настолько привыкли к такой форме записи, что уже не замечаем, как в уме умножаем цифры числа на различные степени числа 10, которое явля­ется основанием десятичной системы счисления.

Задания выполнения Задание с кратким ответом. Запишите числа 3,1410 и 10,12 в развернутой форме. Задание с кратким ответом. Во сколько раз увеличатся числа 10,110 и 10,12 при переносе запятой на один знак вправо? Задание с кратким ответом. При переносе запятой на два зна­ ка вправо число 11,11Х увеличилось в 4 раза. Чему равно осно­ вание системы счисления х? Задание с кратким ответом. Какое минимальное основание может иметь система счисления, если в ней записано число 11? Число 99? Задание с кратким ответом. Запишите год, месяц и число своего рождения с помощью римских цифр.