Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа 1 города Суздаля» Факультативное занятие в 6 классе по теме: Учитель математики:

Презентация:



Advertisements
Похожие презентации
Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа 77 города Хабаровска»
Advertisements

Перестановки. Задача 1. Антону, Борису и Виктору повезло, и они купили 3 билета на футбол на 1,2 и 3-е места первого ряда стадиона. Сколькими способами.
Тема урока: «Комбинаторные задачи. Правило умножения» Предмет: алгебра Класс: 9 Тип урока: рефлексия.
Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа 1 города Суздаля» Факультативное занятие в 6 классе по теме: Учитель математики:
Сколько четных двузначных чисел можно составить из цифр 0,1,2,4,5,9? Ответ:15 чисел
Различные комбинации из трех элементов. А-7. Три друга, Антон, Борис и Виктор, приобрели два билета на футбольный матч. Сколько существует различных вариантов.
Комбинаторные задачи. Комбинаторика. выбор расположение перестановки n!
Элементы комбинаторики Размещения. Задача 1. Сколькими способами 9 человек могут встать в очередь в театральную кассу? Решение: P 9 = 9! = 9·8·7·6·5·4·3·2·1.
Комбинаторика – наука о переборе и подсчете комбинаций.
Методы решения задач. Правило суммы Если конечные множества не пересекаются, то число элементов X U Y {или} равно сумме числа элементов множества X и.
Размещения Задача 1. Три друга – Антон, Борис и Виктор – приобрели два билета на футбольный матч на 1-е и 2-е места первого ряда стадиона. Сколько у друзей.
Формулы числа перестановок, сочетаний, размещений. 11 класс. Учитель И.В.Тытарь.
На завтрак Вова может выбрать плюшку, бутерброд, пряник или кекс, а запить их он может кофе, соком или кефиром. Из скольких вариантов завтрака Вова может.
Комбинаторные задачи Демонстрационный материал 5 класс.
Г. ЕКАТЕРИНБУРГ МОУ-ГИМНАЗИЯ 13 УЧИТЕЛЬ АНКИНА Т.С. Комбинаторные задачи. Комбинаторика. выбор расположение перестановки n!
Перестановки Цели образовательные : объяснить понятие перестановки ; ввести понятие факториала и объяснить правила работы с ним ; рассмотреть задачу.
1 Автор : Богомолова Ольга Михайловна учитель математики МОУ СОШ 6 городского округа город Шарья Костромской области.
Г. ЕКАТЕРИНБУРГ МОУ-ГИМНАЗИЯ 13 УЧИТЕЛЬ АНКИНА Т.С. Комбинаторные задачи. Комбинаторика. выбор расположение перестановки n!
Средняя школа 46 ШЕСТЬ УРОКОВ ПО КОМБИНАТОРИКЕ В 7-м КЛАССЕ Белгород 2005 Тарасова А.М.
У кассы кинотеатра стоят четверо ребят. У двух из них сторублевые купюры, у других двух – пятидесятирублевые. Билет в кино стоит 50 рублей. В начале продажи.
Транксрипт:

Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа 1 города Суздаля» Факультативное занятие в 6 классе по теме: Учитель математики: Плотникова Т.В.

Вычислите :

Антон, Борис и Виктор купили 3 билета на футбол на 1-е, 2-е, 3-е места первого ряда стадиона. Сколькими способами мальчики могут занять эти места? 3 Задача:

4 Решение задачи: АА А В Б Б Б В Может быть такая последовательность: А может быть и так: ВВАБ Может быть и так: ВВААББ Ответ: 6 вариантов Заметим, что 3!=6

Теорема о перестановках элементов конечного множества: n различных элементов можно расставить по одному на n различных мест ровно n! способами. Перестановкой называется множество из n элементов, записанных в определённом порядке. Определение: Р n =n! Запомните!!!

6 Вычислите : 56 24

7 Вычислите : 116 1

8 2Р х =12 Решите уравнение : 4

Задача: Пять друзей решили сфотографироваться. Сколькими способами их можно рассадить? 120 Сколько фигурок можно сложить из Танграма? 7!

Найдите количество всех способов, которыми можно составить трехцветный флаг из горизонтальных полос красного, белого и синего цветов. Задача: А какие? Чтобы ответить на это вопрос давайте обозначим каждый цвет буквой, с которой он начинается: К – красный, Б – белый, С – синий. 6

Задача: Сколько трёхзначных чисел можно получить, используя числа 1,2,3? Это числа: 123, 132, 213, 231, 312, Сколько четырёхзначных чисел можно составить, используя числа 1,2,3,4? Заметили закономерность? 24

Построим дерево возможных вариантов, если первая цифра числа: 2 Задача: Из цифр 2, 4, 7 составили трёхзначные числа, в которых ни одна цифра не может повторяться более двух раз. а) 8 б) 24 б) Сколько всего таких чисел составили? а)Сколько таких чисел начинается с 2?

Задача: Из цифр 2, 4, 7 составили трёхзначные числа. 2 б)Сколько таких чисел, в которых 2 может повторяться, начинаются с 2? 6 в)Сколько таких чисел, начинаются с двойки и цифра 4 может повторяться? а)Сколько таких чисел, в которых ни одна цифра не может повторяться, начинаются с 2?

Расставляем предметы по порядку ПредметЧисло вариантов Математика 6 Литература5 Русский язык 4 Английский язык 3 Биология 2 1 Физкультура Всего вариантов расписания =720 Задача: В 6 классе в среду 6 уроков: математика, литература, русский язык, английский язык, биология и физкультура. Сколько вариантов расписания можно составить? 720

В 6 классе во вторник 5 уроков: физкультура, русский язык, литература, обществознание и математика. Сколько можно составить вариантов расписания на день, зная точно, что математика - последний урок? Ответ: 24 варианта Задача: Чем отличается эта задача от предыдущей? Какой предмет можно не учитывать при составлении расписания? 4!=24

Имеется девять различных книг, четыре из которых - учебники. Сколькими способами можно расставить эти книги на полке так, чтобы все учебники стояли рядом ? Задача: 17280

Проказница мартышка, Осел, Козел, Да косолапый мишка затеяли сыграть квартет…Вам знакомо это произведение? Задача: 4!=24

Р 5 = 5! 18 Задача: Петя, Вася, Галя, Света и Марина садятся на скамейку. Сколькими способами можно это сделать? 5!=120

19 Задача: Сколькими способами Петя, Вася, Галя, Света и Марина могут сесть так, чтобы Галя и Марина были рядом? 24!=48

20 Задача: Сколькими способами Петю, Васю, Галю, Свету и Марину можно посадить так, чтобы Петя был в середине? 4!=24

21 Сколькими способами Петю, Васю, Галю, Свету и Марину можно посадить так, чтобы Петя и Вася не были рядом? Задача: 72

22 Сколькими способами Петю, Васю, Галю, Свету и Марину можно посадить так, чтобы Света не была второй слева? Задача: 96

23 Сколькими способами Петю, Васю, Галю, Свету и Марину можно посадить так, чтобы Марина не сидела с краю? Задача: 72

24 Сколькими способами Петю, Васю, Галю, Свету и Марину можно посадить так, чтобы Марина не была непосредственно между Галей и Светой? Задача: 108

Сколькими способами можно переставить буквы в слове «эскиз»? Задача: 5!=120

26 Задача: Сколько слов можно получить, переставляя буквы в слове «переправа»? Чем отличается эта задача от предыдущей? Запишем следующую формулу: где к –сумма повторений различных букв, а к 1,к 2,… - повторения каждой различной буквы. Разберём эту формулу на нашем примере: Буква «п» встречается 2 раза, «е» – 2 раза, «р» – 2 раза, «а» – 2 раза, «в» – 1 раз, значит, к= =9, к 1 =2,к 2 =2,к 3 =2,к 4 =3,к 5 =1. Подставим полученные значения в формулу: 22680

27 Сколько слов можно получить, переставляя буквы в словах: «молоко»? «математика»? Задача для самостоятельного решения: