ПЛАН УРОКА 1. Теоретическая разминка. 2. Энциклопедия квадратных уравнений. 3. Думающий колпак. 4. Историческая справка. 5. Копилка ценных мыслей. 6. Домашнее задание.
1.Сформулируйте определение квадратного уравнения. 2. Объясните, в чём заключается смысл ограничения в определении квадратного уравнения (а 0). 3. Перечислите виды квадратных уравнений. 4. Какое квадратное уравнение называется неполным? Приведите пример. 5. Какое квадратное уравнение называется приведённым? Приведите пример. 6. Способы решения полного квадратного уравнения? Вопросы теоретической разминки: подробнее
Специальные методы: 1. Метод выделения квадрата двучлена.Метод выделения квадрата двучлена. 2. Метод «переброски» старшего коэффициента.Метод «переброски» старшего коэффициента. 3. На основании теорем.На основании теорем.
Общие методы: Разложение на множители; Введение новой переменной; Графический метод.
ДУМАЮЩИЙ КОЛПАК Большим и указательным пальцами мягко оттягивают назад и прижимают, массируя, раковины ушей. УЧЕБНЫЕ ИНСТРУКЦИИ Держите голову прямо, чтобы подбородку было удобно. Упражнение повторяют трижды или более раз.
уравнения Слог
. Впервые ввёл термин «квадратное уравнение» немецкий философ - знаменитый немецкий философ, родился в 1679 г. в Бреславле, в семье простого ремесленника, изучал в Йене сначала богословие, потом математику и философию.
– английский математик, который ввёл термин «дискриминант».
В 13 – 16 веках даются отдельные методы решения различных видов квадратных уравнений. Слияние этих методов произвел в 1544 году немецкий математик – Это было настоящее событие в математике.
Домашнее задание Решите уравнение 3х 2 + 5х + 2 = 0: 1. используя формулу дискриминанта – « 3 », 2. двумя способами – « 4 », 3. тремя способами – « 5 ». Дополнительно. Решите уравнение (х 2 -х) (х 2 -х) + 24 = 0 методом введения новой переменной.
Энциклопедия квадратного уравнения подробнее
РЕШЕНИЕ НЕПОЛНЫХ КВАДРАТНЫХ УРАВНЕНИЙ РЕШЕНИЕ в=0 ах 2 +с=0 в=0 ах 2 +с=0 с=0 ах 2 +вх=0 с=0 ах 2 +вх=0 в,с=0 ах 2 =0 в,с=0 ах 2 =0 подробнее
Алгоритм решения 1.Переносим с в правую часть уравнения. ах 2 = -с. 2.Делим обе части уравнения на а0. х 2 =. 3.Если >0 - два решения: х 1 = и х 2 = - Если 0 - два решения: х 1 = и х 2 = - Если
1. Выносим x за скобки: х (ах + в) = «Разбиваем» уравнение на два: x = 0, ах + в = Два решения: х = 0 и х = (а0). 1. Выносим x за скобки: х (ах + в) = «Разбиваем» уравнение на два: x = 0, ах + в = Два решения: х = 0 и х = (а0). Алгоритм решения с=0 ах 2 +вх=0 с=0 ах 2 +вх=0
1. Делим обе части уравнения на а0. х 2 = 0 2. Одно решение: х = 0. Алгоритм решения Подведём итог! в,с=0 ах 2 =0 в,с=0 ах 2 =0
Если < 0, то корней нет. Если > 0, то Неполные квадратные уравнения:
D < 0 D < 0 D = 0 D > 0 Корней нет
b = 2k (чётное число)
Теорема Виета x 1 и х 2 – корни уравнения
Суть метода: привести квадратное уравнение общего вида к неполному квадратному уравнению. Пример: х 2 - 6х + 5 = 0. Метод выделения квадрата двучлена. подробнее
Корни квадратных уравнений и связаны соотношениями и Пример: Метод «переброски» старшего коэффициента. подробнее 2х 2 - 9х – 5 = 0.
На основании теорем: Если в квадратном уравнении a+b+c=0, то один из корней равен 1, а второй по теореме Виета равен Если в квадратном уравнении то один из корней равен (-1), Если в квадратном уравнении a+c=b, то один из корней равен (-1), а второй по теореме Виета равен а второй по теореме Виета равен Примеры : подробнее 200х х + 10 = 0.
Метод разложения на множители привести квадратное уравнение общего вида к виду А(х)·В(х)=0, где А(х) и В(х) – многочлены относительно х. Цель: Вынесение общего множителя за скобки; Вынесение общего множителя за скобки; Использование формул сокращенного умножения; Использование формул сокращенного умножения; Способ группировки. Способ группировки. Способы: Пример: подробнее 4х 2 + 5х + 1 = 0.
Введение новой переменной. Умение удачно ввести новую переменную – важный элемент математической культуры. Удачный выбор новой переменной делает структуру уравнения более прозрачной. Пример: подробнее (2х+3) 2 = 3(2х+3) – 2.
Графический метод Для решения уравнения f(x) = g(x) необходимо построить графики функций y = f(x), y = g(x) и найти точки их пересечения; абсциссы точек пересечения и будут корнями уравнения. Пример: подробнее х 2 =х+2.
Графический метод часто применяют не для нахождения корней уравнения, а для определения их количества.
Метод выделения квадрата двучлена. (a + b) 2 = a 2 + 2ab + b 2, (a - b) 2 = a 2 - 2ab + b 2. Решим уравнение х 2 - 6х + 5 = 0. х 2 - 6х + 5 = 0. (х -3) 2 – 4 = 0. (х -3) 2 = 4. х – 3 = 2; х – 3 = -2. х = 5, х =1. Ответ: 5; 1. Решим уравнение х 2 - 6х + 5 = 0. х 2 - 6х + 5 = 0. (х -3) 2 – 4 = 0. (х -3) 2 = 4. х – 3 = 2; х – 3 = -2. х = 5, х =1. Ответ: 5; 1.
Метод переброски старшего коэффициента ax 2 + bx + c = 0 и y 2 + by + ac = 0 связаны соотношениями: Решите уравнение 2х 2 - 9х – 5 = 0. у 2 - 9у - 10 = 0. D>0, по теореме, обратной теореме Виета, получаем корни: -1; 10, далее возвращаемся к корням исходного уравнения: - 0,5; 5. Ответ : 5; -0,5. Решите уравнение 2х 2 - 9х – 5 = 0. у 2 - 9у - 10 = 0. D>0, по теореме, обратной теореме Виета, получаем корни: -1; 10, далее возвращаемся к корням исходного уравнения: - 0,5; 5. Ответ : 5; -0,5.
Теорема 1. Если в квадратном уравнении a + b + c = 0, то один из корней равен 1, а второй по теореме Виета равен Решите уравнение 137х х – 157 = х х – 157 = 0. a = 137, b = 20, c = a + b+ c = – 157 =0. x 1 = 1, Ответ: 1;. Решите уравнение 137х х – 157 = х х – 157 = 0. a = 137, b = 20, c = a + b+ c = – 157 =0. x 1 = 1, Ответ: 1;..
Теорема 2. Если в квадратном уравнении a + c = b, то один из корней равен (-1), а второй по теореме Виета равен Решите уравнение 200х х + 10 = х х + 10 = 0. a = 200, b = 210, c = 10. a + c = = 210 = b. х 1 = -1, х 2 = - Решите уравнение 200х х + 10 = х х + 10 = 0. a = 200, b = 210, c = 10. a + c = = 210 = b. х 1 = -1, х 2 = - Ответ: -1; -0,05
Метод разложения на множители. Решите уравнение 4х 2 + 5х + 1 = 0. 4х 2 + 5х + 1 = 0. 4х 2 + 4х + х + 1 = 0. 4х(х+1) + (х+1) = 0. 4х(х + 1) = 0. Произведение двух множителей равно нулю, если хотя бы один из них равен нулю, а второй при этом не теряет смысла, или когда оба равны нулю. 4х = 0, х + 1 = 0. х = 0, х = -1. Ответ: 0; -1. Решите уравнение 4х 2 + 5х + 1 = 0. 4х 2 + 5х + 1 = 0. 4х 2 + 4х + х + 1 = 0. 4х(х+1) + (х+1) = 0. 4х(х + 1) = 0. Произведение двух множителей равно нулю, если хотя бы один из них равен нулю, а второй при этом не теряет смысла, или когда оба равны нулю. 4х = 0, х + 1 = 0. х = 0, х = -1. Ответ: 0; -1.
Метод введения новой переменной. Решите уравнение (2х+3) 2 = 3(2х+3) – 2. (2х+3) 2 = 3(2х+3) – 2. Пусть: t = 2х + 3. Произведем замену переменной: t 2 = 3t - 2. t 2 -3t + 2 = 0. D > 0. По теореме, обратной теореме Виета: t 1 = 1, t 2 = 2. Произведем обратную замену и вернемся к переменной х, получим следующие корни: -1; -0,5. Ответ: -1; -0,5. Решите уравнение (2х+3) 2 = 3(2х+3) – 2. (2х+3) 2 = 3(2х+3) – 2. Пусть: t = 2х + 3. Произведем замену переменной: t 2 = 3t - 2. t 2 -3t + 2 = 0. D > 0. По теореме, обратной теореме Виета: t 1 = 1, t 2 = 2. Произведем обратную замену и вернемся к переменной х, получим следующие корни: -1; -0,5. Ответ: -1; -0,5.
уравнения метода 1100x x – 153 = 0 220x 2 - 6x = x x + 1 = 0 43x 2 - 5x + 4 = 0 57x 2 + 8x + 2 = 0 635x 2 – 8 = 0 74x 2 – 4x + 3 = 0 8(x – 8) 2 – (3x + 1) 2 = 0 94(x – 1) 2 + 0,5(x – 1) – 1 = x 2 = 0 3. в=0 ах 2 +с=0 2. с=0 ах 2 +вх=0 1. в,с=0 ах 2 =0 4. b - нечётное ах 2 +bx+с=0 5. b - чётное ах 2 +bx+с=0 6. Теорема Виета. 7. Метод выделения квадрата двучлена. 8. Метод «переброски» старшего коэффициента. 9. Т1 или Т Метод разложения на множители. 11. Метод введения новой переменной.
метода шифр 1 ! 2 те 3 но 4 тик 5 нем 6 ке 7 до 8 го 9 ма 10 по 11 эт 12 ру 13 -
уравнения Слог математикнемногопоэт! уравнения Слог Математик немного поэт. Т. Вейерштрасс