Пауль Эренфест (1880 - 1933) «...Пусть имеется проект схемы проводов автоматической телефонной станции. Надо определить: 1) будет ли она правильно функционировать.

Презентация:



Advertisements
Похожие презентации
1 Построение логических схем (Презентация). 2 Правило построения логических схем: 1.Определить число логических переменных. 2.Определить количество базовых.
Advertisements

Базовые логические элементы. Упростить логическое выражение и построить таблицу истинности: F=A & (B v A)
История применения логики в технике Работу выполнила: Алексеева Ксения ученица 10 класса МОУ Мельнично-Поселковой СОШ Приложение 1.
Построение логических выражений по таблице истинности Курсовая работа Евстафьева Алексея, гимн.5, 2002 г.
Логические основы компьютера. Провела: Кутузова Н.А. МОУ Шатковская СОШ 2.
Логические основы вычислительной техники. Таблицы истинности Таблицей истинности называют таблицу значений логической функции для разных сочетаний значений.
Построение логического выражения по таблице истинности Правила построения выражения по таблице истинности : 1. Для каждой строки таблицы истинности с единичными.
ЕГЭ Урок 9 Алгебра логики. Логическое умножение (конъюнкция) «И» A B, A&B A B истинно тогда и только тогда, когда оба высказывания A и B истинны. A B.
БАЗОВЫЕ ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ БАЗОВЫЕ ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ ОСНОВНЫЕ ЛОГИЧЕСКИЕ СХЕМЫ Яхина Рита Альфировна преподаватель высшей квалификационной категории.
1 Совершенная дизъюнктивная нормальная форма и совершенная конъюнктивная нормальная форма Логические основы ЭВМ 10 класс Белоусова Елена Ивановна, учитель.
Логические основы устройства компьютера. В вычислительной технике для построения более сложных логических устройств используются три основных логических.
Записать в виде логического выражения следующие высказывания: 1.Число 17 нечётно и двузначное. 2.Водительские права можно получить тогда и только тогда,
Булевы переменные и функции Булевыми переменными называются переменные, принимающие значение 0 или 1. Булевы (или логические) функции оперируют с булевыми.
Логические переменные и логические функции. Буквы, обозначающие высказывания, можно рассматривать как имена логических переменных, так как ими можно заменить.
Логические элементы и логические схемы компьютера ©Коравая Л.Г., учитель информатики МОУ «СОШ 2», п.Белоусово Жуковского района Калужской области II Ежегодный.
Сложные высказывания можно записывать в виде формул. Для этого простые логические высказывания нужно обозначить как логические переменные буквами и связать.
Основы логики Алгебра высказываний. Логические выражения.
Логические схемы Урок 5. Логические схемы Одним из наиболее удобных способов представления логических выражений является логическая схема. Всего существует.
Входные данные / ввод переменных в логическую схему Выполнение операции ИНВЕРСИЯ А В (0/1) А = 1 0 А = 0 1.
Логические схемы в устройстве компьютера. Шкулёва Мария Вячеславовна 2008г.
Транксрипт:

Пауль Эренфест ( ) «...Пусть имеется проект схемы проводов автоматической телефонной станции. Надо определить: 1) будет ли она правильно функционировать при любой комбинации, могущей встретиться в ходе деятельности станции; 2) не содержит ли она излишних усложнений. Каждая такая комбинация является посылкой, каждый маленький коммутатор есть логическое «или-или», воплощенное в эбоните и латуни; все вместе система чисто качественных... «посылок», ничего не оставляющая желать в отношении сложности и запутанности... правда ли, что, несмотря на существование алгебры логики, своего рода «алгебра распределительных схем» должна считаться утопией?».

Правило построения логических схем: 1.Определить число логических переменных. 2.Определить количество базовых логических операций и их порядок. 3.Изобразить для каждой логической операции соответствующий ей вентиль и соединить вентили в порядке выполнения логических операций.

Построить логическую схему соответствующую логическому выражению. F = X & Y V ( Y V X )

X Y Построить логическую схему соответствующую логическому выражению.

F = X & Y V ( Y V X ) & X Y Построить логическую схему соответствующую логическому выражению.

F = X & Y V ( Y V X ) & 1 X Y Построить логическую схему соответствующую логическому выражению.

F = X & Y V ( Y V X ) & 1 X Y Построить логическую схему соответствующую логическому выражению.

F = X & Y V ( Y V X ) & 1 1 X Y Построить логическую схему соответствующую логическому выражению.

F = ( А V В & C)

С В А Построить логическую схему соответствующую логическому выражению.

F = ( А V В & C) & С В А Построить логическую схему соответствующую логическому выражению.

F = ( А V В & C) & 1 С В А Построить логическую схему соответствующую логическому выражению.

F = ( А V В & C) & 1 С В А Построить логическую схему соответствующую логическому выражению.

Составить логическое выражение по соответствующей логической схеме. & 1 B C A

& 1 B C A F= B & C Составить логическое выражение по соответствующей логической схеме.

& 1 B C A F= B & C A Составить логическое выражение по соответствующей логической схеме.

& 1 B C A F= B & C v A Составить логическое выражение по соответствующей логической схеме.

& & 1 X Y & Z 1

& & 1 X Y & Z F = X & Y 1

Составить логическое выражение по соответствующей логической схеме. & & 1 X Y & Z F = X & Y X & Z 1

Составить логическое выражение по соответствующей логической схеме. & & 1 X Y & Z F = X & Y X & Z Y & Z 1

Составить логическое выражение по соответствующей логической схеме. & & 1 X Y & Z F = X & Y X & Z Y & Z 1

Составить логическое выражение по соответствующей логической схеме. & & 1 X Y & Z F = X & Y X & Z Y & Z 1

Составить логическое выражение по соответствующей логической схеме. & & 1 X Y & Z F = X & Y v X & Z Y & Z 1

Составить логическое выражение по соответствующей логической схеме. & & 1 X Y & Z F = X & Y v X & Z v Y & Z 1

АВХ

АВХ 000

АВХ

АВХ

АВХ

АВХ Для каждого набора переменных, на которых функция принимает значение логической 1, записываются конъюнкции, которые объединяются дизъюнкциями. Переменные каждой строки, имеющие значение логического 0, в конъюнкцию входят с отрицанием, а переменные, имеющие значения логической 1 - без отрицания.

АВХ Для каждого набора переменных, на которых функция принимает значение логической 1, записываются конъюнкции, которые объединяются дизъюнкциями. Переменные каждой строки, имеющие значение логического 0, в конъюнкцию входят с отрицанием, а переменные, имеющие значения логической 1 - без отрицания.

АВХ Для каждого набора переменных, на которых функция принимает значение логической 1, записываются конъюнкции, которые объединяются дизъюнкциями. Переменные каждой строки, имеющие значение логического 0, в конъюнкцию входят с отрицанием, а переменные, имеющие значения логической 1 - без отрицания.

АВХ & 1 B A & (A & B) v (A & B)

XYZF (X&Y&Z) v (X&Y&Z) v (X&Y&Z) = (X&Z) & (YvY) v (X&Y&Z) = X&Z v X&Y&Z = Z &(X v X&Y) = Z & (X v Y)

1 X Y Z &