«Тетраэдр. Сечение тетраэдра плоскостью» Учитель математики Билалова Ирина Станиславовна.

Презентация:



Advertisements
Похожие презентации
Построение сечений (тетраэдр) (тетраэдр) Геометрия, 10 класс.
Advertisements

Построение сечений тетраэдра РТ г. Казань Московский район УЧИТЕЛЯ МАТЕМАТИКИ: ВЫСШЕЙ КАТЕГОРИИ ШКОЛЫ 20 СУББОТИНА Л. Н.; ПЕРВОЙ КАТЕГОРИИ ШКОЛЫ 99 АХМЕТЗЯНОВА.
Многогранники Тетраэдр Параллелепипед Определение сечения. Секущей плоскостью многогранника назовем любую плоскость, по обе стороны от которой имеются.
Урок 2 10 класс стереометрия Тема: «Тетраэдр и его сечение». 10 класс Учитель математики : Юстинская И. С.
Аксиомы стереометрии и их простейшие следствия.. Геометрия Планиметрия Объекты: точка прямая Стереометрия Объекты: точка прямая плоскость.
Задача 60. Постройте сечение грани SAC тетраэдра с плоскостью, проходящей через точку N, принадлежащую этой грани, и прямую n,лежащую плоскости основания.
Параллельность прямых, прямой и плоскости Определение Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.
Определение Лемма Признак перпендикулярности прямой и плоскости Признак перпендикулярности прямой и плоскости Теорема 1 Теорема 2 Теорема о прямой перпендикулярной.
Определение сечения. Секущей плоскостью многогранника назовем любую плоскость, по обе стороны от которой имеются точки данного многогранника. Секущая.
Разрежем тетраэдр на какие-нибудь две части. Многоугольник, полученный на срезе, называют сечением тетраэдра.
Параллельность прямой и плоскости. Если две точки прямой лежат в данной плоскости, то вся прямая лежит в этой плоскости. Тогда возможны три случая взаимного.
Нестеренко Е.В., учитель математики1. 2 Каково может быть взаимное расположение двух прямых на плоскости ? Какие прямые в планиметрии называются перпендикулярными.
Определение Прямая и плоскость называются параллельными, если они не пересекаются. α а - прямая, α - плоскость а а α,тогда а α.
Сечения тетраэдра Автор презентации преподаватель ГБОУ СПО Педагогического колледжа 4 Мартусевич Т.О.
Аксиомы стереометрии С1 Какова бы ни была плоскость, существуют точки, принадлежащие ей и точки не принадлежащие ей. α В С А Р Точки А, В принадлежат.
Урок по теме Автор: Алтухова Ю.В., учитель математики Брянского городского лицея 1.
Построение сечений тетраэдра. Секущая плоскость Точки тетраэдра лежат по обе стороны от плоскости.
Презентация к уроку по геометрии (10 класс) по теме: Презентация. Параллельность прямых и плоскостей.
2009 г.1 Параллельные прямые. Веретенникова И. А..
Урок 2 А В С Д Р Е К М А ВС Д А1А1 В1В1 С1С1 Д1Д1 Q P R К М 2) 1 (в,г); 2(б,д). Назовите по рисунку: в) точки, лежащие в плоскостях АДВ и ДВС; г) прямые.
Транксрипт:

«Тетраэдр. Сечение тетраэдра плоскостью» Учитель математики Билалова Ирина Станиславовна

А1А1 Через любые три точки, не лежащие на одной прямой, проходит одна и только одна плоскость.

А2А2 Если две точки прямой лежат в плоскости, то и вся прямая лежит в этой плоскости.

А3А3 Если две плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку. В любой плоскости выполняются аксиомы планиметрии.

АКСИОМЫ СТЕРЕОМЕТРИИ 1. Через любые три точки, не лежащие на одной прямой, проходит одна и только одна плоскость. 2. Если две точки прямой лежат в плоскости, то и вся прямая лежит в этой плоскости. 3. Если две плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку. В любой плоскости выполняются аксиомы планиметрии...

ОПРЕДЕЛЕНИЯ 1. Две прямые, имеющие только одну общую точку, называются пересекающимися. 2. Две прямые, лежащие в одной плоскости и не имеющие общих точек, называются параллельными. 3 Две прямые, не лежащие в одной плоскости, называются скрещивающимися. 4. Прямая, все точки которой принадлежат плоскости, называется прямой, лежащей в этой плоскости.

ОПРЕДЕЛЕНИЯ (ПРОДОЛЖЕНИЕ) 5. Прямая пересекает плоскость, если у них есть только одна общая точка. 6. Прямая называется параллельной плоскости, а плоскость- параллельной прямой, если они не имеют общих точек. 7. Прямая называется перпендикулярной плоскости (а плоскость прямой), если прямая перпендикулярна любой прямой, лежащей в этой плоскости.

ТЕОРЕМЫ 1. Через прямую и не лежащую на ней точку проходит одна и только одна плоскость. 2. Через две пересекающиеся прямые проходит одна и только одна плоскость. 3. Через две параллельные прямые проходит одна и только одна плоскость. 4. Если одна из параллельных прямых пересекает плоскость, то и другая прямая пересекает эту плоскость.

Какие многоугольники могут получиться в сечении ? Тетраэдр имеет 4 грани В сечениях могут получиться: Четырехугольники Треугольники

Задача 1

Задача 2

K M E A B C D P X Задача 1. Постройте сечение тетраэдра ДАВС плоскостью, проходящей через точки К є АД, М є ДС, Е є ВС. Решение 1. КМ = α АДС 2. МЕ = α ВДС 3. Х = КМ АС 4. Р = ХЕ АВ 5 РЕ = α АВС 6. КР = α АДВ 7. КМЕР - искомое сечение

А В С D M N K X H L Q Задача 2. Постройте сечение тетраэдра ДАВС плоскостью, проходящей через точки К є АВС, М є ВДС, N є АД Решение 1. М М 1 N А 2. Х = NМ А М 1 3. L = КХ ВС 4. Н = КХ АВ 5.НL = α АВС, К є НL 6. НN = α АВД 7.LQ = α ВДС, М є LQ 8. NQ = α АДС 9. HNQL - искомое сечение