3 9,67 0,001 Выполнили учащиеся 6 класса: Плаксин Руслан, Жеронкин Егор, Плехов Влад, Куликова Яна, Ракина Татьяна.

Презентация:



Advertisements
Похожие презентации
Первой дробью, с которой познакомились люди, была половина. Хотя названия всех следующих дробей связаны с названиями их знаменателей (три – «треть», четыре.
Advertisements

Первой дробью, с которой познакомились люди, была половина. Хотя названия всех следующих дробей связаны с названиями их знаменателей (три – «треть», четыре.
«История возникновения дроби» Автор: Голоколенцева Лена, ученица 5в класса. Руководитель: Кудоспаева Н.Н.учитель математики МОУ СОШ 1 г. Искитим 2009 год.
ИСТОРИЯ ДРОБЕЙ. Первой дробью, с которой познакомились люди, была половина. Следующей дробью была треть. И у египтян, и у вавилонян были специальные обозначения.
Старинные задачи на дроби. Из истории дробей Наряду с необходимостью считать предметы у людей с древних времен появилась потребность измерять длину, площадь,
проект подготовила Шкрабо Светлана 5Е класс 1) Как появились дроби в разных странах 2) Как назывались дроби в Древней Руси.
История возникновения обыкновенных дробей
Болотникова Евгения 6Б МБОУ СОШ Первая дробь Первой дробью, с которой познакомились люди, была половина или 1/2. 2.
Обыкновенные дроби. Презентацию подготовил Файзуллин Фаиль ученик средней общеобразовательной школы 7 7 «г» класс.
Работу выполнил ученик 5в класса МОУ СОШ 3 Чиков Александр.
СЛОЖЕНИЕ И ВЫЧИТАНИЕ СМЕШАННЫХ ЧИСЕЛ.. Приятного аппетита! Учиться можно весело… Чтобы переваривать знания, надо поглощать их с аппетитом. Франс А.
Кошик Алёна ученица 5 Б класса. Из истории возникновения обыкновенных дробей Дроби в Вавилоне Дроби в Древнем Египте Дроби в Древнем Риме Открытие десятичных.
«Почему возникли обыкновенные дроби» Выполнил: Михайлов Дмитрий, ученик 5-го класса, МОУ «Байдарская основная общеобразовательная школа»
С древних времён людям приходилось не только считать предметы, но и измерять длину, время, площадь, вести расчеты за купленные и проданные товары. Не.
Исследовательская работа «Влияние математических действий на аликвоты»
История возникновения дробей Работа учащихся 5 Б класса Гюлумян Ангелины и Лазукиной Анастасии Руководитель: Павловская Н.Л.
Из истории обыкновенных дробей. На протяжении многих веков на языках народов ломаным числом именовали дробь. Необходимость в дробях возникла на ранней.
НАУЧНО – ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА по теме «Необыкновенные обыкновенные дроби Карих Александра Андреевна, ученица 6 класса РМОУ Широкоярская СОШ Руководитель.
Сложение и вычитание смешанных чисел.. Сократите дробь.
Необыкновенное путешествие с обыкновенными дробями УРОК –ЭКСПЕДИЦИЯ ПО ТЕМЕ «СЛОЖЕНИЕ, ВЫЧИТАНИЕ ОБЫКНОВЕННЫХ ДРОБЕЙ С ОДИНАКОВЫМИ ЗНАМЕНАТЕЛЯМИ» ВЫПОЛНИЛ.
Транксрипт:

3 9,67 0,001 Выполнили учащиеся 6 класса: Плаксин Руслан, Жеронкин Егор, Плехов Влад, Куликова Яна, Ракина Татьяна.

Египтяне все дроби старались записать как суммы долей, то есть дробей вида 1/n. Например, вместо 8/15 они писали 1/3 + 1/5. Единственным исключением была дробь 2/3. В папирусе Ахмеса есть задача: "Разделить 7 хлебов между 8 людьми". Если резать каждый хлеб на 8 частей, придется провести 49 разрезов. А по-египетски эта задача решалась так. Дробь 7/8 записывали в виде долей: 1/2 + 1/4 + 1/8. Значит, каждому человеку надо дать полхлеба, четверть хлеба и восьмушку хлеба; поэтому четыре хлеба разрезаем пополам, два хлеба - на 4 части и один хлеб - на 8 долей, после чего каждому даем его часть. 1/5 1/23 1/141

Древнеегипетский папирус Эти и некоторые другие дроби встречаются в древнейших дошедших до нас математических текстах, составленных более 5000 лет тому назад, - древнеегипетских папирусах и вавилонских клинописных табличках.

Вавилонская табличка И у египтян, и у вавилонян были специальные обозначения для дробей 1/3 и 2/3, не совпадающие с обозначениями для других дробей. Египтяне все дроби старались записать как суммы долей, т.е. дробей вида 1/n. Единственным исключением была дробь 2/3. например, вместо 8/15 они писали 1/3+1/5. Иногда это бывало удобно.

Математический папирус Ринда, написанный египетским писцом Ахмесом Как использовались дроби в Древнем Египте, позволила нам узнать расшифровка папирусного свитка, найденного в Луксоре в 1858 г. Генрихом Риндом. Сейчас этот свиток находится в Британском музее в Лондоне. Папирус Ринда был написан писцом по имени Ахмес примерно в 1650 г. до нашей эры. Это математическая рукопись, составленная учителем для своих учеников, готовившихся стать придворными писцами. В папирусе есть задача: разделить семь хлебов между восемью людьми. Если резать каждый хлеб на 8 частей, придётся сделать 49 разрезов. А по–египетски эта задача решалась так. Дробь 7/8 записывали в виде долей: ½+1/4+1/8. Теперь ясно, что надо 4 хлеба разрезать пополам, 2 хлеба на 4 части и только один хлеб – на 8 частей (всего 17 разрезов).

Вавилон Шестидесятеричными дробями, унаследованными от Вавилона, пользовались греческие и арабские математики и астрономы. Система счисления в Вавилоне была шестидесятиричной – каждая единица следующего разряда была в 60 раз больше предыдущей. Мы и сейчас пользуемся такими дробями в обозначениях времени и величин углов. Вместо слов «шестидесятые доли», «три тысячи шестисотые доли» говорили короче: «первые малые доли», «вторые малые доли». От этого и произошли наши слова «минута» (по латыни «меньшая») и «секунда» (по латыни «вторая»). Так что вавилонский способ обозначения дробей сохранил своё значение до сих пор. Но было неудобно работать над натуральными числами, записанными в десятичной системе, и дробями, записанными в шестидесятеричной. А работать с обыкновенными дробями было совсем уж плохо - попробуйте, например, сложить или умножить дроби.

Голландский математик и инженер Симон Стевин Поэтому голландский математик Симон Стевин предложил в 1585 году перейти к десятичным дробям. Сначала их писали весьма сложно, но постепенно перешли к современной записи.

Сейчас в ЭВМ используют двоичные дроби. В двоичной системе счисления единица каждого следующего разряда вдвое больше единицы предыдущего разряда. Это позволяет при записи чисел пользоваться лишь двумя цифрами: 0 и 1. Например, запись означает число 1*25+0*24+0*23+1*22+0*2+1, т.е. число 37. Хотя и получается более длинная запись, но нужно всего две цифры.

Любопытно, что двоичными дробями пользовались, по сути дела, в Древней Руси, где были такие дроби, как половина, четь, пол- чети, пол-пол-чети и т.д.

Интересная система дробей была в Древнем Риме. Она основывалась на делении на 12 долей единицы веса, которая называлась асс. Двенадцатую долю асса называли унцией. А путь, время и другие величины сравнивали с наглядной вещью - весом. Например, римлянин мог сказать, что он прошел семь унций пути или прочел пять унций книги. При этом, конечно, речь не шла о взвешивании пути или книги. Имелось в виду, что пройдено 7/12 пути или прочтено 5/12 книги. Из-за того что в двенадцатеричной системе нет дробей со знаменателями 10 или 100, римляне затруднялись делить на 10, 100 и т. д. При делении 1001 асса на 100 один римский математик сначала получил 10 ассов, потом раздробил асе на унции и т. д. Но от остатка он не избавился. Чтобы не иметь дела с такими вычислениями, римляне стали использовать проценты. Так как слова "на сто" звучали по-латыни "про центум", то сотую часть и стали называть процентом.

В греческих сочинениях по математике дробей не встречалось. Греческие ученые считали, что математика должна заниматься только целыми числами. Возиться с дробями они предоставляли купцам, ремесленникам, а также астрономам, землемерам, механикам и другому "черному люду". Но старая пословица гласит: "Гони природу в дверь - она влетит в окно". Поэтому и в строго научные сочинения греков дроби проникали "с заднего хода". Кроме арифметики и геометрии, в греческую науку входила музыка. Музыкой греки называли учение о гармонии. Это учение опиралось на ту часть нашей арифметики, в которой говорится об отношениях и пропорциях. Греки знали: чем длиннее натянутая струна, тем ниже получается звук, который она издает, а короткая струна издает высокий звук. Но у всякого музыкального инструмента не одна, а несколько струн. Для того чтобы все струны при игре звучали "согласно", приятно для слуха, длины звучащих частей их должны быть в определенном отношении. Поэтому учение об отношениях и дробях использовалось в греческой теории музыки.

Современную систему записи дробей с числителем и знаменателем создали в Индии. Только там писали знаменатель сверху, а числитель - снизу и не писали дробной черты.

Арабская письменность Записывать дроби в точности, как сейчас, стали арабы.

Вывод: В результате нашего исследования мы выяснили, что дроби возникли не как результат деления целых чисел. Они возникли в процессе изменения, как определенные части некоторых определенных мер.