(570490 гг. до н. э) Подготовила ученица 8-а класса Кагонян Розалина Учитель- Кичатова О. Н.

Презентация:



Advertisements
Похожие презентации
Теорема Пифагора История, доказательство, применение Презентацию подготовила ученица 8А класса ГОУ Сош 119 Алмазова Александра.
Advertisements

Презентацию подготовили учащиеся 8- а класса Полещук Анна, Гончарова Анна Учитель Кичатова О. Н.
Теорема Пифагора Подготовила ученица 9Б класса Гаджиева Хураман.
Способы доказательства теорема Пифагора Подготовила презентацию Ученица 8 «А» класса МБОУ СОШ 19 Авакян Нелля Проверила: Куликова Е.И.
Пифагор Работа учителя ГОУСОШ 1315 Мирсалимовой Е.Н.
1. Биография 2. Научные достижения Пифагор с ранних лет стремится узнать как можно больше. Он обучается в нескольких храмах Греции. Принято считать его.
Пифагор Самосский- древнегреческий философ и математик, создатель религиозно-философской школы пифагорейцев. Историю жизни Пифагора трудно отделить от.
В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов. с b a.
ПИФАГОР (570 г. до н.э. – 490 г. до н.э.) Древнегреческий философ и математик, создатель религиозно- философской школы пифагорейцев.
( около 570 около 500 до н. э.),. Отец Пифагора, Мнесарх, был достаточно богатым человеком, чтобы дать сыну хорошее воспитание. Когда Мнесарх, отец Пифагора,
Презентация по теме: "Теорема Пифагора"
– древнегреческий философ, математик и мистик, создатель религиозно - философской школы Пифагорейцев. Был назван « величайшим эллинским мудрецом » Геродотом.
Теорема Пифагора. Подготовила ученица 8 класса «А» Насурова Винера. Учитель математики: Зёлка Людмила Ивановна.
Площадь квадрата Презентация по геометрии ученицы 8 «В» класса Жиряковой Марии.
Историю жизни Пифагора трудно отделить от легенд, представляющих Пифагора в качестве полубога и чудотворца, совершенного мудреца и великого посвященного.
Теорема Пифагора. Дилленбург Лилии 8 «Б».. Формулировки. В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей.
Теорема Пифагора Выполнил ученик 8а класса Рякин Илья.
Теорема Пифагора. Формулировки теоремы Геометрическая Геометрическая Геометрическая Алгебраическая Алгебраическая Алгебраическая.
Пифагор. Пифагор Самосский (др.-греч. Πυθαγόρας Σάμιος, лат. Pythagoras; гг. до н. э.) древнегреческий философ и математик, создатель религиозно-
Теорема Пифагора. Кто такой Пифагор? Древнегреческий мыслитель, религиозный и политический деятель. Создатель религиозно- философской школы пифагорейцев.
Транксрипт:

( гг. до н. э) Подготовила ученица 8-а класса Кагонян Розалина Учитель- Кичатова О. Н.

Родителями Пифагора были Мнесарх и Партенида с острова Самос. Мнесарх был камнерезом (Диоген Лаэртский); по словам же Порфирия он был богатым купцом из Тира, получившим самосское гражданство за раздачу хлеба в неурожайный год. Рождение ребёнка будто бы предсказала Пифия в Дельфах, потому Пифагор и получил своё имя, которое значит «тот, о ком объявила Пифия». В частности, Пифия сообщила Мнесарху, что Пифагор принесет столько пользы и добра людям, сколько не приносил и не принесет в будущем никто другой. Поэтому, на радостях, Мнесарх дал жене новое имя Пифаида и дал имя ребенку Пифагор. Пифаида сопровождала мужа в его поездках, и Пифагор родился в Сидоне Финикийском (по Ямвлиху) примерно в 570 до н. э. Родителями Пифагора были Мнесарх и Партенида с острова Самос. Мнесарх был камнерезом (Диоген Лаэртский); по словам же Порфирия он был богатым купцом из Тира, получившим самосское гражданство за раздачу хлеба в неурожайный год. Рождение ребёнка будто бы предсказала Пифия в Дельфах, потому Пифагор и получил своё имя, которое значит «тот, о ком объявила Пифия». В частности, Пифия сообщила Мнесарху, что Пифагор принесет столько пользы и добра людям, сколько не приносил и не принесет в будущем никто другой. Поэтому, на радостях, Мнесарх дал жене новое имя Пифаида и дал имя ребенку Пифагор. Пифаида сопровождала мужа в его поездках, и Пифагор родился в Сидоне Финикийском (по Ямвлиху) примерно в 570 до н. э.

В юном возрасте Пифагор отправился в Египет, чтобы набраться мудрости и тайных знаний у египетских жрецов. Диоген и Порфирий пишут, что самосский тиран Поликрат снабдил Пифагора рекомендательным письмом к фараону Амасису, благодаря чему он был допущен к обучению и посвящён в таинства, запретные для прочих чужеземцев. Ямвлих пишет, что Пифагор в 18-летнем возрасте покинул родной остров и, объехав мудрецов в разных краях света, добрался до Египта, где пробыл 22 года, пока его не увёл в Вавилон в числе пленников персидский царь Камбиз, завоевавший Египет в 525 до н. э. В Вавилоне Пифагор пробыл ещё 12 лет, общаясь с магами, пока наконец не смог вернуться на Самос в 56-летнем возрасте, где соотечественники признали его мудрым человеком. Ямвлих пишет, что Пифагор в 18-летнем возрасте покинул родной остров и, объехав мудрецов в разных краях света, добрался до Египта, где пробыл 22 года, пока его не увёл в Вавилон в числе пленников персидский царь Камбиз, завоевавший Египет в 525 до н. э. В Вавилоне Пифагор пробыл ещё 12 лет, общаясь с магами, пока наконец не смог вернуться на Самос в 56-летнем возрасте, где соотечественники признали его мудрым человеком.

Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника.

Обратная теорема Пифагора: Для всякой тройки положительных чисел a, b и c, такой, что a 2 + b 2 = c 2, существует прямоугольный треугольник с катетами a и b и гипотенузой c.

На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии. Данный факт даже нашёл отражение в художественной литературе: в повести «Приключения Электроника» Евгения Велтистова главный герой на школьном уроке математики приводит у доски 25 различных доказательств теоремы Пифагора, повергнув в изумление учителя и всех одноклассников. Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них: доказательства методом площадей, аксиоматические и экзотические доказательства (например, с помощью дифференциальных уравнений).

Следующее доказательство алгебраической формулировки наиболее простое из доказательств, строящихся напрямую из аксиом. В частности, оно не использует понятие площади фигуры. Пусть ABC есть прямоугольный треугольник с прямым углом C. Проведём высоту из C и обозначим её основание через H. Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC. Введя обозначения | BC | = a, | AC | = b, | AB | = c получаем Что эквивалентно Сложив, получаем илиa 2 + b 2 = c 2, что и требовалось доказать

Расположим четыре равных прямоугольных треугольника так, как показано на рисунке. Четырёхугольник со сторонами c является квадратом, так как сумма двух острых углов 90°, а развёрнутый угол 180°. Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырёх треугольников и площади внутреннего квадрата. Что и требовалось доказать.