Лекция 1 для студентов 1 курса, обучающихся по специальности 060103 - Педиатрия К.п.н., доцент Шилина Н.Г. Красноярск, 2012 Тема: Интегральное исчисление.

Презентация:



Advertisements
Похожие презентации
Лекция 9 для студентов 1 курса, обучающихся по специальности – Медицинская кибернетика к.б.н., доцент Попельницкая И.М. Красноярск, 2014 Тема: Определенный.
Advertisements

1 Неопределённый интеграл 1 Неопределённый интеграл Функция F (x) называется первообразной для функции f (x) в промежутке a < x < b, если в любой точке.
Неопределенный интеграл. Определенный интеграл. Лекция 9.
Лекция 4. Тема: «Дифференциал и интеграл» Специальность: «Сестринское дело» Курс: 2 Дисциплина: «Математика» Подготовила: преподаватель высшей категории.
План лекции: 1. Методы интегрирования(продолжение) 2. Определенный интеграл.
Кафедра медицинской и биологической физики Тема: Элементы теории вероятностей лекция 10 для студентов 1 курса обучающихся по направлению подготовки
План: 1.Понятие первообразной функции. Неопределенный интеграл. 2.Методы интегрирования (по формулам, заменой переменной, по частям). 3.Понятие определенного.
Неопределённый интеграл.. Первообразная. Задача дифференциального исчисления: по данной функции найти её производную. Задача интегрального исчисления:
Интегральное исчисление Приложения определённого интеграла.
Учебное пособие по дисциплине «Элементы высшей математики» Учебное пособие по дисциплине «Элементы высшей математики» Преподаватель: Французова Г.Н. Преподаватель:
Интегральное исчисление. Дифференциальные уравнения.
Непрерывные случайные величины Лекция 15. План лекции Непрерывные случайные величины. Закон распределения. Функции распределения и плотности распределения.
Неопределенный интеграл.. §1 Первообразная функция. Понятие неопределенного интеграла. Определение: Первообразной функцией для данной функции f(x) на.
Лекция Неопределенный интеграл. Основные понятия Исследования во многих отраслях знаний приводят к необходимости по заданной производной найти исходную.
Неопределенный интеграл Лекция7Элементы интегрального исчисления 1.Первообразная и неопределенный интеграл 2.Основные приемы вычисления неопределенных.
Неопределенный интеграл Лекция7. Элементы интегрального исчисления 1.Первообразная и неопределенный интеграл 2.Основные приемы вычисления неопределенных.
Неопределенный интеграл. Основные свойства неопределенного интеграла.
НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ 1.Определение и свойства неопределенного интеграла.
Функции и их производные Лекция 7. План лекции Определение функции. Основные элементарные функции и их графики. Предел функции. Понятие производной функции.
НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, ЕГО СВОЙСТВА И ВЫЧИСЛЕНИЕ.
Транксрипт:

лекция 1 для студентов 1 курса, обучающихся по специальности Педиатрия К.п.н., доцент Шилина Н.Г. Красноярск, 2012 Тема: Интегральное исчисление Дифференциальные уравнения Кафедра медицинской и биологической физики

План лекции: Понятие неопределенного интеграла.Свойства неопределенного интеграла Понятие определенного интеграла.Свойства определенного интеграла Таблица интегралов от некоторых функций. Способы вычисления интегралов Типы дифференциальных уравнений и способы их решения

Понятие неопределенного интеграла Функция F(x), называется первообразной для функции f(x), если ее производная F'(x) равна данной функции, F'(x) = f(x), а dF(x)=f(x)dx. Совокупность всех первообразных F(x)+C для данной функции f(x) называется неопределенным интегралом (обозначается f(x)dx=F(x)+C, где f(x)dx – подынтегральное выражение, f(x) – подынтегральная функция, С- постоянная).

Свойства неопределенного интеграла дифференциал неопределенного интеграла равен подынтегральному выражению: dF(x)dx = F(x)dx; неопределенный интеграл от дифференциала функции равен этой функции: F(x)dx= F(x) + C; постоянный множитель выносится за знак интеграла: kf(x)dx = kf(x)dx; интеграл суммы (разности) функций равен сумме (разности) интегралов этих функций: (f 1 (x) ± f 2 (x) ± f 3 (x))dx= (f 1 (x)dx± f 2 (x)dx ± f 3 (x))dx.

Таблица интегралов основных функций

Методы интегрирования Интегрирование по формулам. Этот метод основан на использовании таблицы интегралов основных функций и свойствах неопределенного интеграла Интегрирование методом замены переменной (или метод подстановки). Этот способ применяется для упрощения подынтегрального выражения и сведения интеграла к табличному. Вводится новая переменная z=f(x), находится ее дифференциал dz=z'dx, выражается, и все подынтегральное выражение записывается в новых переменных z.

Понятие определенного интеграла

Выражение называют определенным интегралом функции f(x) на отрезке [ab]. Если неопределенный интеграл представляет собой совокупность функций, отстоящих друг от друга на величину С, то определенный интеграл – это всегда число, значение которого определяется видом подынтегральной функции и значениями верхнего (b) и нижнего (а) пределов интегрирования.

Свойства определенного интеграла при смене пределов интегрирования меняется знак у определенного интеграла если пределы интегрирования равны между собой, то определенный интеграл равен нулю если точка с принадлежит отрезку [ab], то выполняется равенство

Формула Ньютона -Лейбница Чтобы вычислить определенный интеграл необходимо найти его первообразную (неопределенный интеграл) и подставить пределы интегрирования

Дифференциальные уравнения Уравнение, содержащее независимую переменную х, функцию f(x) и ее производные от первого до n-го порядка, называется дифференциальным. F(x,f(x),f'(x),f''(x),…,f (n) (x),С)=0. Порядок дифференциального уравнения определяется порядком наивысшей производной. Решением дифференциального уравнения называется функция y=f(x), которая при подстановке обращает это уравнение в тождество.

Алгоритм решения дифференциальных уравнений представить производную в дифференциальной форме, т.е. ; разделить переменные, т.е. все, что относится к одной переменной (х) собрать в одной части равенства, а все, что относится к другой переменной (у) – в другой части равенства; проинтегрировать обе части равенства и записать решение в виде y=f(x); выполнить проверку.

Основные типы дифференциальных уравнений и способы их решения уравнение вида y'= f(x).

уравнение вида y'= f(у).

уравнение с разделяющимися переменными вида f 1 (x)Ψ 1 (y)dx+f 2 (x)Ψ 2 (y)dy=0

Общее и частное решение дифференциального уравнения Константа может быть выбрана в любом виде (произвольно) для удобства решения. И тогда получают общее решение дифференциального уравнения. Если же заданы начальные условия, то константа вычисляется и имеет вполне определенное значение. Тогда можно говорить о частном решении дифференциального уравнения.

Заключение Нами рассмотрены: понятия неопределенного и определенного интегралов, а также показаны на примерах способы их решения; виды дифференциальных уравнений, алгоритмы их решения.

Тест-контроль Порядок дифференциального уравнения определяется порядком входящей в него: 1.функции 2.аргумента 3.высшей производной 4.низшей производной

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА Обязательная: 1.Павлушков И.В. Основы высшей математики и математической статистики: учебник для мед.вузов.- М.: ГЭОТАР-Медиа, Дополнительная: 1.Математика в примерах и задачах: учебное пособие /Л.Н.Журбенко, Г.А. Никонова, Н.В.Никонова и др.- М.: ИНФРА-М, Шаповалов К.А. Основы высшей математики: учебное пособие. - Красноярск: Печатные технологии, Математика: метод. указания к внеаудит. работе для студ. по спец. – педиатрия /сост. Л.А.Шапиро и др.- Красноярск: тип.КрасГМУ, Электронные ресурсы: 1.ЭБС КрасГМУ 2.Ресурсы интернет

БЛАГОДАРЮ ЗА ВНИМАНИЕ