F С4 С4 В треугольнике ABC AB=13, BC=10, CA=7. Точка B лежит на прямой BC так, что BD : DC = 1 : 4. Окружности, вписанные в каждый из треугольников ADC.

Презентация:



Advertisements
Похожие презентации
Решение задания С 4 (варианты 5, 8). О С А В Отрезки касательных к окружности, проведённые из одной точки, равны Решение задания С 4 требует знания свойства.
Advertisements

РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ Расстоянием от точки до прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на данную прямую.
Чему равен отрезок DC?. Дано: / ABC=120 Найти: / M.
Перпендикуляр Перпендикуляром, опущенным из точки A на прямую а, называется отрезок AB, соединяющий точку A с точкой B прямой a, перпендикулярный прямой.
Определение подобных треугольников Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
Соотношения между сторонами и углами треугольника.
С4 С4 Дана трапеция ABCD, основания которой BC=44, AD=CD=35. Окружность, касающаяся прямых AD и AC, касается стороны CD в точке K. Найдите длину отрезка.
Периметр квадрата равен 12 см. Вычислить длину окружности, описанной около четырехугольника, вершинами которого служат середины сторон данного квадрата.
ТЕОРЕМА МЕНЕЛАЯ. Пусть дан треугольник ABC, точки A1,B1,C1 лежат на продолжениях сторон BC, AС и AB соответственно. Если точки A1,B1,C1 лежат на одной.
Материал по геометрии (8 класс) по теме: задачки на доказательство по геометрии
Теорема 1 Внешний угол произвольного треугольника больше каждого внутреннего, не смежного с ним. Доказательство. Пусть АВС – произвольный треугольник.
Теорема Стюарта М. Стюарт ( Stewart Matthew ) – английский математик, опубликовавший теорему в 1746 в труде « Некоторые общие теоремы ».
Дано: AB = MN, BC = NK, AC = MK. Доказать: АВС = MNK B A N M C N K M K Доказательство: 1. Приложим АВС к MNK так, как показано на рисунке. 2. Проведём.
Теорема Менелая Пусть на сторонах AB, BC и продолжении стороны AC треугольника ABC взяты соответственно точки C 1, A 1 и B 1. Точки A 1, B 1, C 1 лежат.
Теорема Чевы. Формулировка теоремы Чевы Пусть на сторонах треугольника ABC выбраны точки А 1ЄВС, В 1ЄАС, С 1ЄАВ Отрезки АА 1, ВВ 1, СС 1 пересекаются.
Задание 7 ( ) Площадь треугольника ABC равна 194, DE средняя линия, параллельная стороне AB. Найдите площадь трапеции ABED.
Подготовила ученица 9 А класса Васюткина Ольга. Если точки A`, B` и C` лежат соответственно на сторонах BC, CA и AB треугольника ABC или на их продолжениях,
Основные понятия Скрещивающиеся прямые Расстояние между скрещивающимися прямыми Угол между скрещивающимися прямыми.
Геометрия 7 класс по Л.С. Атанасяну учитель математики МБОУ СОШ 18 имени Э.Д.Потапова г.Мичуринска.
Транксрипт:

F С4 С4 В треугольнике ABC AB=13, BC=10, CA=7. Точка B лежит на прямой BC так, что BD : DC = 1 : 4. Окружности, вписанные в каждый из треугольников ADC и ABD, касаются стороны AD в точках E и F. Найдите длину отрезка EF. 1 случай A C B D E x y z часть 4 части Точка В лежит на прямой. Может т. В лежать между точками В и С? Проверим…

С4 С4 В треугольнике ABC AB=13, BC=10, CA=7. Точка B лежит на прямой BC так, что BD : DC = 1 : 4. Окружности, вписанные в каждый из треугольников ADC и ABD, касаются стороны AD в точках E и F. Найдите длину отрезка EF. 2 случай A C BFx y z часть 4 части E Точка В лежит на прямой ВС. Может т. В лежать на продолжении прямой ВС за точкой В? Проверим… D

С4 С4 В треугольнике ABC AB=13, BC=10, CA=7. Точка B лежит на прямой BC так, что BD : DC = 1 : 4. Окружности, вписанные в каждый из треугольников ADC и ABD, касаются стороны AD в точках E и F. Найдите длину отрезка EF. Этот случай невозможен A CB D части 1 часть Точка В лежит на прямой ВС. Может т. В лежать на продолжении прямой ВС за точкой С? Проверим…