Полярные координаты. Построение графиков кривых в программе Microsoft Office Еxcel
В полярной системе координат основными постоянными элементами, по отношению к которым определяется положение точки на плоскости, является точка O - полюс и ось OP, которая называется полярной осью. В полярной системе координат основными постоянными элементами, по отношению к которым определяется положение точки на плоскости, является точка O - полюс и ось OP, которая называется полярной осью. Если M - произвольная точка плоскости, не совпадающая с полюсом O, то ее положение на плоскости вполне определено заданием двух чисел: r - ее расстояния от полюса, выраженного в единицах масштаба, и - угла φ, на который следует повернуть полярную ось против часовой стрелки, чтобы она совпала с лучом OM. Числа r и φ называются полярными координатами точки M. Если M - произвольная точка плоскости, не совпадающая с полюсом O, то ее положение на плоскости вполне определено заданием двух чисел: r - ее расстояния от полюса, выраженного в единицах масштаба, и - угла φ, на который следует повернуть полярную ось против часовой стрелки, чтобы она совпала с лучом OM. Числа r и φ называются полярными координатами точки M. Полярные координаты M O P φ r
Переход из полярной системы координат в декартовую систему координат. Если полюс полярной системы координат находится в начале прямоугольной системы координат, а положительная полуось Ox совпадает с полярной осью, ось же Oy перпендикулярна оси Ox и направлена так, что ей соответствует полярный угол φ, то по известным полярным координатам точки ее прямоугольные координаты вычисляются из формул Если полюс полярной системы координат находится в начале прямоугольной системы координат, а положительная полуось Ox совпадает с полярной осью, ось же Oy перпендикулярна оси Ox и направлена так, что ей соответствует полярный угол φ, то по известным полярным координатам точки ее прямоугольные координаты вычисляются из формул
Пример 1 Построить кривую, заданную уравнением r=4cos3 φ Внесем данные и получим следующее распределение по столбцам электронной таблицы: где аргумент F (угол в радианах) будем изменять от 0,1 до 6,3 радиана. Возможно изменение и до 12,6; 18,9; 25,2 и т.д.
Далее выделим те данные, которые получились в столбцах «Х» и «У», нажмём кнопку «Мастер диаграмм» на панели инструментов и выберем тип диаграммы «Точечная диаграмма со значениями, соединёнными сглаживающими линиями без маркеров» Получим кривую: r = a cos k φ r = a sin kφ Данная кривая является частным случаем семейства кривых, имеющих общее уравнение r = a cos k φ или r = a sin kφ и называемых «Розами Гранди»
РОЗЫ ГРАНДИ РОЗЫ ГРАНДИ Гвидо Гранди ( ) – итальянский математик, историк и священник В уравнении «роз» параметр а отвечает за радиус лепестков, а параметр k – за их количество k=2 k=7 k=7 k=3 k=4 k=2 k=10 k=5
Вариации роз
k=59 k=15 k=13,97 k=9,5 k=9,5 k=74 k=10,4
Пример 2 Спираль Архимеда r = a φ
Пример 3 Гиперболическая спираль R=a/ φ
Пример 4 Кривые Хабеннихта Математическим исследованием формулы цветов и листьев занимался также немецкий геометр Л. Хабеннихт Лист кислицы Лист плюща
Лист стрелолиста Лист кувшинкиЛист клёна r = a (1 + cosφ)
r = 1 + 7cos(k φ ) + 4sin 2 (k φ ) + 3sin 4 (k φ ) Цветы
Цветы При к=5При к=6 При к=6,3При к=7,5
Цветы
Над презентацией работали учащиеся 11Б класса МОУ «Ломоносовская СОШ 3» Наталья Ващенко Самсон Приёмышев Учитель – Торопова Елена Владимировна