Простые и составные числа.

Презентация:



Advertisements
Похожие презентации
Простые числа Выполнил: Ученик 7 а класса Потанин Илья Научный руководитель: Киселева Т.С.
Advertisements

ПРОСТЫЕ ЧИСЛА
Разложение на простые множители. Учитель математики МБОУ Лицей 4 Шибарова Галина Григорьевна г.Красногорск Урок по математике 6 класс
Простые и и составные числа простые числа - это целое положительное число больше единицы, которое не делится без остатка ни на одно другое целое положительное.
МШЛ «Достар» Тема исследовательского проекта «Решето Эратосфена» Автор: Сырым Амина ученица 6 В класса Руководитель:Фирсова Е.В. Алматы 2014 г.
2009 год МОУ Среднекибечская СОШ Выполнил: Ученик 8 а класса Викторов Сергей Учитель: Галина Филиповна.
Стеценко Олеся 6 «А». Одной из самых больших загадок математики является расположение простых чисел в ряду всех натуральных чисел. Иногда два простых.
Математика 6 класс Учитель математики МОУ «Ужурской СОШ 1 им. А. К. Харченко» Громова Наталья Викторовна.
МОУ «Лицей 17» Фестиваль «Портфолио» Автор: Шульгина Дарья ученица 7 б класса Руководитель: Зандер С.И. учитель математики Славгород, 2008.
Выучить правила на стр.17 учебника (записать их в справочник) Письменно выполнить 110, 112, 116 Домашнее задание.
Д(6) = Найдем делители чисел {1, 2, 3, 6} Д(8) ={1, 2, 4, 8} Д(9) ={1, 3, 9} Д(7) ={1, 7} Д(11) ={1, 11} Д(23) ={1, 23} Составные числа Простые числа.
ЧИСЛА БЛИЗНЕЦЫ. Простые числа, разность которых равна 2, называются близнецами. Любопытно, что в натуральном ряду имеется даже «тройня» - это числа 3,5,7.
Приложение 1 к решению Совета депутатов города Новосибирска от _____________ ______ Масштаб 1 : 5000.
Простые числа. Ефимова Марина, ученица 7 класса МОУ «Новошимкусская СОШ Яльчикского района Чувашской Республики» Руководитель учитель математики МОУ «Новошимкусская.
Цель работы: мне интересно было выяснить, а существует ли наибольшее простое число? Хочу напомнить одноклассникам и просто любознательным: -натуральное.
Приложение 1 к решению Совета депутатов города Новосибирска от Масштаб 1 : 5000.
Работа учащегося 7Б класса Толгского Андрея. Каждое натуральное число, больше единицы, делится, по крайней мере, на два числа: на 1 и на само себя. Если.
Проект: «Классификация натуральных чисел» Руководитель: Снимщикова Софья. Участник: Крутикова Марина. Консультант: Шалимова Марина Николаевна. Москва,2012.
Размещения. А Размещения В комбинаторике размещением называется расположение «предметов» на некоторых «местах» при условии, что каждое место занято.
Простые числа это те числа, которые имеют два делителя. Единица и это же число.
Транксрипт:

Простые и составные числа

Тысячи лет натикали часы с того мгновения, когда человек впервые употребил знаковые обозначения для количества исчисляемых предметов. Этими символами были цифры. Соединяя изобретенные знаки по придуманным ним самим же правилам, человек сотворил основное понятие математики - число, тем самым пробудив к жизни неслыханные дотоле законы отношений между числами. Изучение неведомых законов происходило долго и мучительно и дало человеку многое, а некоторые потаенные связи, так и оставшиеся непознанными с тех незапамятных времен, продолжают терзать математиков и сегодня. К числу таких, на внешность кажущихся посильными к осмыслению, относятся тайны простых и составных чисел.

Все целые числа (кроме 0 и 1) имеют минимум два делителя: 1 и самого себя. Числа, не имеющие других делителей, называются простыми числами. Числа, имеющие другие делители, называются составными числами. Таким образом, все натуральные числа, за исключением единицы, разбиваются на простые и составные. Простых чисел – бесконечное множество. Ниже приведены простые числа, не превосходящие 200: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199. Основная теорема арифметики простых чисел. Любое составное натуральное число можно представить единственным образом в виде произведения простых чисел (порядок сомножителей при этом не принимается во внимание).

конец