Пирамида - многогранник, основание которого многоугольник, а остальные грани треугольники, имеющие общую вершину. По числу углов основания различают пирамиды треугольные, четырёхугольные и т. д.
Начало геометрии пирамиды было положено в Древнем Египте и Вавилоне, однако активное развитие получило в Древней Греции. Первый, кто установил, чему равен объем пирамиды, был Демокрит,а доказал Евдокс Книдский. Древнегреческий математик Евклид систематизировал знания о пирамиде в XII томе своих «Начал», а также вывел первое определение пирамиды: телесная фигура, ограниченная плоскостями, которые от одной плоскости сходятся в одной точке.
апофема высота боковой грани правильной пирамиды, проведенная из ее вершины. боковые грани треугольники, сходящиеся в вершине пирамиды; боковые ребра общие стороны боковых граней; вершина пирамиды точка, соединяющая боковые рёбра и не лежащая в плоскости основания; высота отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра); диагональное сечение пирамиды сечение пирамиды, проходящее через вершину и диагональ основания; основание многоугольник, которому не принадлежит вершина пирамиды.
Если все боковые ребра равны, то: около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр; боковые ребра образуют с плоскостью основания равные углы. также верно и обратное, то есть если боковые ребра образуют с плоскостью основания равные углы или если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны. Если боковые грани наклонены к плоскости основания под одним углом, то: в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр; высоты боковых граней равны; площадь боковой поверхности равна половине произведения периметра основания на высоту боковой грани.
Пирамида называется правильной, если основанием её является правильный многоугольник, а вершина проецируется в центр основания. Пирамида называется прямоугольной, если одно из боковых рёбер пирамиды перпендикулярно основанию. В данном случае, это ребро и является высотой пирамиды. Усечённой пирамидой называется многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию.
1 В правильной усеченной четырехугольной пирамиде высота равна 2, а стороны оснований равны 3 и 5. Найдите диагональ усеченной пирамиды. 2 в правильной четырехугольной пирамиде точка О- центр основания, SO=8, BD=30.Найдите боковой ребро SA.
2. В правильной пирамиде все грани и ребра равны. Рассмотрим OSB: SB²=SO²+OB²=64+225=289 SB=SA=17 Ответ:17