«Перпендикулярные прямые в пространстве» «Перпендикулярность прямой и плоскости» Тема урока:
Модель куба. D1D1 В А1А1 А D С1С1 С В1В1 1.Как называются прямые АВ и ВС? 2.Найдите угол между прямыми АА 1 и DC; ВВ 1 и АD. В пространстве перпендикулярные прямые могут пересекаться и могут скрещиваться.
Перпендикулярные прямые в пространстве. Две прямые в пространстве называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен b a c a b, a b c a, c a c /c /c /c /
Рассмотрим прямые АА 1, СС 1 и DC. D1D1 В А1А1 А D С1С1 С В1В1 АА1 СС 1 ; DC СС 1 АА 1 DC Если одна из параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.
Лемма. Если одна из двух параллельных прямых перпендикулярна к третей прямой, то и другая прямая перпендикулярна к этой прямой. a b c a II b, a c A C M
Найдите угол между прямой АА 1 и прямыми плоскости (АВС): АВ, АD, АС, ВD, МN. D1D1 В А1А1 А D С1С1 С В1В1 N М 90 0 Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости.
Определение. Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости. a a
О 1 АВ прямых углов Построение прямых углов на местности с помощью простейшего простейшего прибора, экер который называется экер Треножник Треножниксэкером Отвес Экера перпендикулярен плоскости земли.
Канат в спортивном зале перпендикулярен плоскости пола.
a a1a1a1a1 Теорема. Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости. a х
a b Обратная теорема. Если две прямые перпендикулярны к плоскости, то они параллельны. a b a II b
q p a a a p, p a q, q Признак перпендикулярности прямой и плоскости. Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.
Чтобы установить перпендикулярность прямой и плоскости достаточно проверить перпендикулярность лишь к двум прямым, лежащим в плоскости.
p q О m l a a Рассмотрим случай, когда прямая a проходит через точку О. А В P Q L
p q Оa a1a1a1a1 a Случай, когда прямая a не проходит через точку О