1 Основные задачи СМ 1. Прочность F Излом (разрыв связей) >F 2. Жесткость F 3. Устойчивость F >F.

Презентация:



Advertisements
Похожие презентации
1 СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Герасимов Сергей Иванович, проф. каф. «Строительная механика» ауд. 147/2.
Advertisements

Деформация растяжения z x y C F 4 E I II K I F 1 F 2 F 3 F 5 B D A Деформация, при которой в поперечном сечении бруса возникает один силовой факторпродольная.
ОПРЕДЕЛЕНИЕ Сила упругости – сила, возникающая при деформации тела и направленная противоположно направлению смещения частиц при деформации.
Сила упругости. F упр mg Сила упругости – сила, возникающая при деформации тела и направленная противоположно направлению смещения частиц при деформации.
Изгиб балок Изгибом стержней называется такой случай деформации стержня, когда его продольная ось искривляется. Стержень, работающий на изгиб, называется.
Сила упругости. F упр mg Сила упругости – сила, возникающая при деформации тела и направленная противоположно направлению смещения частиц при деформации.
Основные понятия сопромата Прикладная наука об инженерных методах расчёта на прочность, жесткость и устойчивость деталей машин и конструкций, называется.
Кафедра «Строительная механика» Бобушев Сергей Алексеевич
СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Основные требования к конструкциям Природные ресурсы должны использоваться рационально. Соответственно, от конструкций требуется.
Сложное сопротивление Сложный и косой изгиб Под сложным сопротивлением подразумевают деформации бруса возникающие в результате комбинации, в различных.
Нормальные напряжения при изгибе А А А растяжение сжатие А н.с. - нейтральный слой н.с. Гипотеза Бернулли – поперечные сечения балки при чистом изгибе.
Основные понятия деформации кручения Под кручением понимают такой вид деформации, при котором в поперечном сечении бруса действует только один силовой.
Нормальные напряжения при изгибе В теории плоского изгиба, для упрощения решения задачи определения нормальных напряжений, на основании натурных испытаний,
ОПРЕДЕЛЕНИЕ Сила упругости – сила, возникающая при деформации тела и направленная противоположно направлению смещения частиц при деформации.
Механические характеристики материалов, l мм O F кН F вр F т F упрг F пц А В С D E K F к l пол l ост NM Диаграмма растяжения малоуглеродистой стали На.
Номинация конкурса: педагогические идеи и технологии в профессиональном образовании Название работы: Тема «Кручение» Автор: Желновач Ирина Юрьевна преподаватель.
Основные понятия и определения Индексы при напряжениях проставляются по следующему правилу первый индекс указывает, какой оси параллельна нормаль к площадке.
Методы оценки прочности Самым распространенным методом оценки прочности деталей машин является расчет по допускаемым напряжениям по условиям прочности.
Лекция 4 3. Расчет элементов ДК цельного сечения 3.5. Элементы подверженные действию осевой силы с изгибом.
Деформация – это изменение формы или объема тела под действием внешних сил.
Транксрипт:

1 Основные задачи СМ 1. Прочность F Излом (разрыв связей) >F 2. Жесткость F 3. Устойчивость F >F

2 Типы элементов конструкций пластинки h d d l a b h

3 оболочка h

4 Основные гипотезы Сплошность – непрерывность пространства тела, хотя тела имеют дискретное (атомарное) строение. Однородность – независимость механических свойств от координат точек тела. Изотропность – одинаковость механических свойств во всех направлениях. Упругость – способность материала восстанавливать начальную форму и размеры после снятия нагрузки. Относительная жесткость – деформации и перемещения малы можно использовать ТМ для определения реакций опор и внутренних усилий

5 Классификация сил 1.Внешние и внутренние 2.Статические и динамические 3.Постоянные и временные

6 П П Метод сечений A B F1F1 F2F2 F3F3 F4F4 F3F3 F4F4 x y z QzQz QyQy N MxMx MzMz MyMy

7 F1F1 F2F2 A F f ср A – элементарная площадь – среднее напряжение – полное напряжение на элем. площадке

8 x y z A x yx zx Метод сечений Разложим полное напряжение на составляющие: – нормальное напряжение – касательные напряжение

9 Растяжение (сжатие) прямых стержней Деформацией растяжения (сжатия) прямого стержня называется такой случай сопротивления стержня, когда внутренние силы в его поперечном сечении сводятся (статически эквиваленты) к одной равнодействующей, направленной вдоль продольной оси стержня. Эта равнодействующая называется продольной силой.

10 Растяжение (сжатие) прямых стержней x y X Y MBMB F 1 = 20 кН F 2 = 30 кН F 3 = 25 кН X = F 1 - F 2 + F 3 = 15 кН I I II X BA Эп N (кН)

11 Растяжение (сжатие) прямых стержней Правило: Продольная сила равна сумме проекций всех внешних сил, взятых по одну сторону от сечения, на продольную ось стержня с учетом правила знаков. Важное правило знаков: Продольная растягивающая сила направляется от сечения и считается положительной.

12 Напряжения и деформации Гипотеза Бернулли (гипотеза плоских сечений): Поперечные сечения при деформации не искривляется, т.е. остаются плоскими при растяжении-сжатии все продольные волокна удлиняются на оду и ту же величину.

13 Напряжения и деформации «до» деформации «после» деформации b b1b1 l l l - удлинение стержня, b = b 1 – b – сужение стержня Ведем относительные деформации: - продольная деформация - поперечная деформация

14 Напряжения и деформации Пуассон заметил:- Const для каждого материала Коэффициент Пуассона – отношение относительной поперечной деформации к относительной продольной деформации при растяжении или сжатии стержня Для изотропных материалов: Сталь: ~ 0.25 …0.3 Медь: ~ 0.4 Бетон: ~ 0.15 Резина: ~ 0.5

15 Напряжения и деформации В 1676 году Роберт Гук экспериментально установил x = E E – модуль продольной упругости ([E] = МПа) Сталь: E ~ 2·10 5 МПа Медь: E ~ 1·10 5 МПа Бетон: E ~ 10 4 …10 5 МПа Алюминий: E ~ 7·10 4 МПа

16 Напряжения и деформации В поперечном сечении стержня: А N x нормальное напряжение в поперечном сечении стержня закон Гука для удлинения жесткость стержня при растяжении

17 Напряжения и деформации Условие прочности при растяжении: или [ ] R – расчетное сопротивление [ ] – допускаемое напряжение