Презентация по истории геометрии МОУ «Рождественская СОШ» Выполнил учащийся 7 класса учитель – Мотеюнене С.В. 2012 год.

Презентация:



Advertisements
Похожие презентации
Евклид и его «Начала»
Advertisements

Евклид Работа учителя ГОУСОШ 1315 г Москвы Мирсалимовой Е.Н.
7 класс Аксиома параллельности прямых. Повторение « Признаки параллельности двух прямых » Задание 1.
Евклид - древнегреческий математик. Юный математик Жил в начале III века до нашей эры Сын Наукрата, известный под именем «Геометра», ученый старого времени,
Евклид. Евклид.. Евклид (ок до н. э.) древнегреческий математик. Работал в Александрии в 3 в. до н. э. Главный труд «Начала» (15 книг), содержащий.
Быкова Ксения 7 а класс 2011 год. Евклидова геометрия.
Выполнила ученица 8 «в» класса Кирбитова Полина Реферат на тему: Руководитель: Полозова О. Г. :
Аксиома параллельных прямых Об аксиомах геометрии Аксиома параллельных прямых О теоремах Свойства параллельных прямых Евклид Об авторе.
Актуальность. Проблема: в настоящее время мы изучаем геометрию, не зная ее автора. Мне бы хотелось, чтобы мои одноклассники при имени Евклид, знали о.
Евклид (предположитель-но до н.э.) - математик Александрийской школы Древней Греции, автор первого дошедшего до нас трактата по математике.
Выдающийся математик Евклид. Жизнь и деятельность Евклида Евклид (предположитель- но до н.э.) - математик Александрийской школы Древней Греции,
Эвклид биография БИОГРАФИЯ Евклид (ок до н. э.) древнегреческий математик. Работал в Александрии в 3 в. до н. э. Главный труд «Начала» (15 книг),
ПРОКТ по теме : ЕВКЛИД. ПЯТЫЙ ПОСТУЛАТ ЕВКЛИДА. ПРОКТ по теме : ЕВКЛИД. ПЯТЫЙ ПОСТУЛАТ ЕВКЛИДА. Составила: ученица 8 Г класса, МОУ СОШ 1 г. Фрязино Арапова.
Аксиома параллельных прямых Аксио́ма – исходное утверждение, принимаемое истинным без доказательств, и которое в последующем служит «фундаментом»
Имена Великих математиков на страницах учебника математики.
Аксиома параллельных прямых Учебное занятие разработала Жоголева Надежда Владимировна учитель математики МБОУ СОШ 33 г. Смоленска © 2012 Prezentacii.com.
Г. Эвклида учит решать задачи при помощи циркуля и линейки, другими словами - при помощи следующих геометрических операций: соединения двух указанных.
Евклид ( иначе Эвклид ) – древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике. Биографические сведения об.
Ладанова Ирина Владимировна МБОУ «Верх-Жилинская ООШ» С. Верх-Жилино Косихинского района Алтайского края.
«Начала» Евклида Автор работы: Васильева Ксения 10а.
Транксрипт:

Презентация по истории геометрии МОУ «Рождественская СОШ» Выполнил учащийся 7 класса учитель – Мотеюнене С.В год

Евклид и его Начала

Автобиография Евклид или Эвклид, (ок. 300 г. до н. э.) древнегреческий математик. Сын Наукрата, известный под именем «Геометра», ученый старого времени, по своему происхождению грек, по месту жительства сириец, родом из Тира… Евклид должен быть старше Архимеда, который ссылался на Начало. До наших времён дошли сведения, что он преподавал в Александрии, столица Птолемея I, начинавший превращаться в один из центров научной жизни.

Евклид в науке Что касается места Евклида в науке, то оно определяется не столько собственными его научными исследованиями, сколько педагогическими заслугами. Евклиду приписывается несколько теорем и новых доказательств, но их значение не может быть сравнимо с достижениями великих греческих геометров: Фалеса и Пифагора(VI век до н. э.), Евдокса и Теэтета (IV век до н.э.). Величайшая заслуга Евклида в том, что он подвёл итог построению геометрии и придал изложению столь совершенную форму, что на 2000 лет Начала стали энциклопедией геометрии. Начала Евклида вытеснили все сочинения и в течение более чем двух тысячелетий оставались базовым учебником геометрии.

Учебник Евклида Создавая свой учебник, Евклид включил в него многое из того, что было создано его предшественниками, обработав этот материал и сведя его воедино. Начала состоят из тринадцати книг. Первая и некоторые другие книги предваряются списком определений. Первой книге предпослан также список постулатов и аксиом. Как правило, постулаты задают базовые построения (напр., «требуется, чтобы через любые две точки можно было провести прямую»), а аксиомы общие правила вывода при оперировании с величинами (напр., «если две величины равны третьей, они равны между собой»).

Книги «Начала» Главный труд Евклида, написанный около 300 г. До н. э. и посвящённый систематическому построению геометрии. «Начала» вершина античной геометрии и античной математики вообще, итог её 300- летнего развития и основа для последующих исследований. Том состоит из 13 книг. К сожалению подробная информация сохранилась только о первой книге.

Обзор содержания книги I. Первая книга начинается определениями, из которых первые семь гласят: 1. Точка есть то, что не имеет частей. 2. Линия длина без ширины. 3. Края же линии точки. 4. Прямая линия есть та, которая равно лежит на всех своих точках. 5. Поверхность есть то, что имеет только длину и ширину. 6. Края же поверхности линии. 7. Плоская поверхность есть та, которая равно лежит на всех своих линиях.

За определениями Евклид приводит постулаты. 1. От всякой точки до всякой точки можно провести прямую. 2. Ограниченную прямую можно непрерывно продолжать по прямой. 3. Из всякого центра всяким раствором может быть описан круг. 4. Все прямые углы равны между собой. 5. Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых. *постулат- утверждение, принимаемое без доказательств. И служащее основой для построения какой-либо научной теории.

За постулатами следуют аксиомы. Равные одному и тому же равны и между собой. И если к равным прибавляются равные, то и целые будут равны. И если от равных отнимаются равные, то остатки будут равны. (И если к неравным прибавляются равные, то целые будут не равны.) (И удвоенные одного и того же равны между собой.) (И половины одного и того же равны между собой.) И совмещающиеся друг с другом равны между собой. И целое больше части. (И две прямые не содержат пространства.) *Аксиома - исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без необходимости доказательства и лежащее в основе доказательства других ее положений.

Обзор содержания книг II – VI. II книга теоремы так называемой «геометрической алгебры». III книга предложения об окружностях, их касательных и хордах, центральных и вписанных углах. IV книга предложения о вписанных и описанных многоугольниках, о построении правильных многоугольников. V книга общая теория отношений, разработанная Евдоксом Книдским. VI книга учение о подобии геометрических фигур. Эта книга завершает евклидову планиметрию

Обзор содержания книг VII – XIII. VII–IX книги - посвящены теории чисел и восходят к пифагорейцам; автором VIII книги, возможно, был Архит Тарентский. В этих книгах рассматриваются теоремы о пропорциях и геометрических прогрессиях, вводится метод для нахождения наибольшего общего делителя двух чисел (известный ныне как алгоритм Евклида), строится чётные совершенные числа, доказывается бесконечность множества простых чисел. X книга - представлет собой самую объёмную и сложную часть Начал, строится классификация иррациональностей; возможно, что её автором является Теэтет Афинский. XI книга - содержит основы стереометрии XII книга - с помощью метода исчерпывания доказываются теоремы об отношениях площадей кругов, а также объёмов пирамид и конусов; автором этой книги по общему признанию является Евдокс Книдский. XIII книга - посвящена построению пяти правильных многогранников; считается, что часть построений была разработана Теэтетом Афинским.

Информация о всех книгах Начала В дошедших до нас рукописях к этим тринадцати книгам прибавлены ещё две. XIV книга принадлежит александрийцу Гипсиклу (ок. 200 г. до н. э.), а XV книга создана во время жизни Исидора Милетского, строителя храма св. Софии в Константинополе (начало VI в. н. э.). Начала предоставляют общую основу для последующих геометрических трактатов Архимеда, Аполлония и других античных авторов; доказанные в них предложения считаются общеизвестными. В создании и развитии науки Нового времени Начала также сыграли важную идейную роль. Они оставались образцом математического трактата, строго и систематически излагающего основные положения той или иной математической науки. Не случайно возникло предание, согласно которому над входом в платоновскую Академию была помещена надпись «Да не войдёт сюда не знающий геометрии».