Уравнение окружности Урок геометрии в 9 классе. Цели урока: Образовательные: Вывести уравнение окружности, рассмотрев решение этой задачи как одну из.

Презентация:



Advertisements
Похожие презентации
Уравнение окружности Урок геометрии в 8 классе учитель Авласенко И.Г ГОУ СОШ 1740 г. Зеленоград.
Advertisements

Презентация к уроку (геометрия, 9 класс) по теме: Уравнение окружности
Окружность. Окружностью называется геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки, называемой.
Сфера. Уравнение сферы. Взаимное расположение сферы и плоскости.
Цель урока 1)Вывести понятие сферы, шара, и их элементов. 2)Вывести уравнение сферы в заданной прямоугольной системе координат 3)Формировать навык решения.
Геометрия 11 класс. Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки. Точка О называется.
Тема: Геометрическое место точек. Метод геометрических мест Цель урока: Цель урока: Ввести понятие геометрического места точек; Ввести понятие геометрического.
Тела вращения. Сфера и шар
1. Познакомиться с алгоритмом нахождения точек пересечения прямых. 2. Отработка умений и навыков решения задач по теме «Декартовы координаты на плоскости».
Волгаевская Г.А. учитель математики МАОУ гимназии 1 г.Советска.
Цели урока: Образовательные: ознакомить учащихся с понятиями окружность и круг; показать различие и сходство данных фигур и уметь распознавать их в жизни;.
Тела вращения Шар. Сфера и шар. Тело, ограниченное сферой, называется шаром. Сферой называется поверхность, состоящая из всех точек пространства, расположенных.
Компьютерное обучение.. Живая геометрия. Программа «Живая геометрия» это виртуальный конструктор, предназначенный для построения геометрических фигур.
Окружность Геометрия-7 класс МОУ «Русско-Ошняковская ООШ» Учитель математики Закирова Ф.М.
Урок 23. Окружность. Окружностью называется геометрическая фигура, состоящая из всех точек, расположенных на заданном расстоянии от данной точки – центра.
ШАР Мультимедийное пособие по стереометрии для 11 класса учителя математики МОУ «СОШ 15» г.Братска Аникиной А.И.
СФЕРА И ШАР. План презентации: Определение сферы, шара. Уравнение сферы. Взаимное расположение сферы и плоскости. Площадь сферы. Итог урока.
1.Определение окружности 2.Отрезки «с именами» 3.Взаимное расположение прямой и окружности 4.Длина окружности 5.Площадь круга 6.Итог План.
Сфера и шар Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки. Тело, ограниченное.
Расстояние между точками. Самостоятельная работа Вариант 1 1.Определение аб…ц…сы точки А. 2.Формула …рд…наты середины отрезка. 3. Отметьте на плоскости.
Транксрипт:

Уравнение окружности Урок геометрии в 9 классе

Цели урока: Образовательные: Вывести уравнение окружности, рассмотрев решение этой задачи как одну из возможностей применения метода координат. Уметь: – Распознать уравнение окружности по предложенному уравнению, научить учащихся составлять уравнение окружности по готовому чертежу, строить окружность по заданному уравнению. –Применять современные ИКТ для оформления результатов исследования. Воспитательные: Формирование критического мышления и навыков работы в группе. Развивающие: Развитие умения составлять алгоритмические предписания и умение действовать в соответствии с предложенным алгоритмом.

Повторение Запишите формулу нахождения координат середины отрезка. Запишите формулу вычисления длины вектора. Запишите формулу нахождения расстояния между точками (длины отрезка).

1 этап: Вывод формулы Уравнение фигуры – это уравнение с двумя переменными х и у, которому удовлетворяют координаты любой точки фигуры. Пусть дана окружность. А ( а ; b ) – центр окружности, С ( х ; у ) – точка окружности, М (х; у) – точка окружности. Что можно сказать о взаимном расположении точек А и С на плоскости и точек А и М на плоскости? Как можно сформулировать определение окружности? Окружностью называется геометрическая фигура, состоящая из всех точек, расположенных на заданном расстоянии от данной точки.

Вывод формулы Пусть дана окружность. А ( а ; b ) – центр окружности, С ( х ; у ) – точка окружности. Найти расстояние между точками А с С. d 2 = АС 2 = ( х – а ) 2 + ( у – b ) 2, Как можно назвать отрезок АС? d = АС = R, следовательно R 2 = ( х – а ) 2 + ( у – b ) 2

Формула I ( х – а ) 2 + ( у – b ) 2 = R 2 уравнение окружности, где А ( а ; b ) центр, R радиус, х и у – координаты точки окружности. __________________________ А (2;4) – центр, R = 3, то ( х – 2 ) 2 + ( у – 4 ) 2 = 3 2 ; ( х – 2 ) 2 + ( у – 4 ) 2 = 9.

Формула II ( х – а ) 2 + ( у – b ) 2 = R 2. Центр окружности О(0;0 ), ( х – 0 ) 2 + ( у – 0 ) 2 = R 2, х 2 + у 2 = R 2 уравнение окружности с центром в начале координат.. О (0;0) – центр, R = 5, тогда х 2 + у 2 = 5 2 ; х 2 + у 2 = 25.

Для того чтобы составить уравнение окружности, нужно: 1) узнать координаты центра; 2) узнать длину радиуса; 3) подставить координаты центра ( а ; b ) и длину радиуса R в уравнение окружности ( х – а ) 2 + ( у – b ) 2 = R 2.

1. Составить уравнение окружности. координаты центра: ( ; ) R = уравнение окружности:

2. Составить уравнение окружности. координаты центра: ( ; ) R = уравнение окружности:

3. Составить уравнение окружности.

4. Составить уравнение окружности.

2 этап: Работа в группах 1 группа задание 1 группа задание 2группа задание 2группа задание 3 группа задание 3 группа задание Выход

Группа1 1 Заполните таблицу. Уравнение окружностиРадиусКоорд. центра 1( х – 5) 2 + ( у + 3) 2 = 36R=( ; ) 2( х – 1) 2 + ( у + 1) 2 = 2R=( ; ) 3( х + 1) 2 + ( у – 7) 2 = 49R=( ; ) 4 х 2 + у 2 = 81R=( ; ) 5( у – 5) 2 + ( х + 3) 2 = 7R=( ; ) 6( х + 3) 2 + у 2 = 14R=( ; )

2. Постройте в тетради окружности, заданные уравнениями: 1)( х – 5) 2 + ( у + 3) 2 = 36; 2) ( х + 1) 2 + ( у – 7) 2 = 49. Вернуться к групповым заданиям

Группа2: 1 Найдите координаты центра и радиус, если АВ – диаметр данной окружности. ДаноРадиус Координаты центра А (0;6) В (0; 2) d 2 = ( x 2 – x 1 ) 2 + ( y 2 – y 1 ) 2 СВ 2 = R 2 = R 2 = R = А (0; 6) В (0; 2). С ( ; )- середина АВ С ( ; ) А (2;0) В ( 4; 0)

2 Построить по полученным данным окружности в тетради. Составить алгоритм построения окружности по координатам концов диаметра Вернуться к групповым заданиям

Группа3: 1. Составьте уравнение окружности с центром А (3;2), проходящей через В (7;5).

2. Составьте уравнение окружности с центром в точке С (3;1), проходящей через начало координат. Вернуться к групповым заданиям

Спасибо за внимание!