Особенную важность имеют те методы науки, которые позволяют решать задачу, общую для всей практической деятельности человека: как располагать своими средствами.

Презентация:



Advertisements
Похожие презентации
Отыскание наибольшего и наименьшего значений непрерывной функции не промежутке.
Advertisements

Презентацию подготовила Преподаватель математики ОГБПОУ ПЛ 3 г. Иваново Чернечкова Галина Вячеславовна Наибольшее и наименьшее значения функции Размещено.
Работа учителя математики Зениной Алевтины Дмитриевны.
Применение производной для отыскания наибольших и наименьших значений величин.
«МАТЕМАТИКА» ПРЕПОДАВАТЕЛЬ ПЕТРОВА Л.А. «Наибольшие и наименьшие значения функции»
По графику функции у=f(x) найдите: 1.Область определения функции. [-3;6] 2. Абсциссы точек в которых f`(x)=0 0;3,5 3. Абсциссы точек в которых f`(x) не.
Наибольшее и наименьшее значения функции Презентацию подготовила Преподаватель математики ОГБПОУ ПЛ 3 г. Иваново Чернечкова Галина Вячеславовна.
Работу выполнили: обучающиеся 10 класса МОБУ «Солнечная СОШ» Василенкова Оксана, Леонов Евгений, Достоевский Сергей.
Задачи типа В12 в ЕГЭ Исследование функций. I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I.
Применение производной для нахождения наибольших и наименьших величин Челбаева Вера Александровна МОУ ВСОШ 1 г. Каменка 2012 г.
Производная и дифференциал.. Исследование функций. Теорема 1. 1)(необходимые условия) Если дифференцируемая на интервале (a;b) функция f(x) возрастает.
Решение задач В11. Необходимое условие точки экстремума. Теорема. В точке экстремума производная функции либо равна нулю, либо не существует. Если функция.
Согласно теореме Вейерштрасса, если функция непрерывна на отрезке [a;b], то она достигает на нем наибольшего и наименьшего значений. Эти значения могут.
Экстремумы функции одного переменного Пусть X – область определения функции y = f(x) и точка x 0 X. Определение 1. Число М называется локальным максимумом.
Тема: «Применение производной к исследованию функции»
наибольшее и наименьшее значение функции К уроку по теме.
Н АХОЖДЕНИЕ НАИБОЛЬШЕГО И НАИМЕНЬШЕГО ЗНАЧЕНИЯ ФУНКЦИИ Учитель математики КОУ «Заливинская СОШ» Зубкова Екатерина Михайловна
Применение производной к исследованию функций. Достаточное условие возрастания функции Если в каждой точке интервала (a, b) f'(x)>0, то функция f(x) возрастает.
Возрастание и убывание функции Урок 46 По данной теме урок 2 Классная работа
Цель проекта: Конструирование системы задач по теме: «отыскание наибольших и наименьших значений величин» Задачи проекта: 1) Образовательные: - отработка.
Транксрипт:

Особенную важность имеют те методы науки, которые позволяют решать задачу, общую для всей практической деятельности человека: как располагать своими средствами для достижения наибольшей выгоды. Особенную важность имеют те методы науки, которые позволяют решать задачу, общую для всей практической деятельности человека: как располагать своими средствами для достижения наибольшей выгоды. Русский математик XIX века П.Л.Чебышёв

ух у наиб. = 4 [-5; 6] у наиб. = 5 [-7; 6] 1 1

ух 0-76 у наим. =- 3 [-7; 4] у наим. = -4 [-7; 6]

3. Какие точки называются стационарными? 4. Какие точки называются критическими? 5. Назвать необходимые и достаточные условия существования точек экстремума функции

Нахождение наибольшего и наименьшего значений функции широко применяется при решении многих практических задач на нахождение наилучших, оптимальных решений при наименьших затратах труда, в так называемых задачах на оптимизацию. Нахождение наибольшего и наименьшего значений функции широко применяется при решении многих практических задач на нахождение наилучших, оптимальных решений при наименьших затратах труда, в так называемых задачах на оптимизацию. ПРИМЕР. Рекламный щит имеет форму прямоугольника S=9 м 2. Изготовьте щит в виде прямоугольника с наименьшим периметром

Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке 10 класс Ищук Людмила Николаевна учитель математики МБОУ ООШ 269 ЗАТО Александровск

° ВЫВЕСТИ АЛГОРИТМ НАХОЖДЕНИЯ НАИМЕНЬШЕГО И НАИБОЛЬШЕГО ЗНАЧЕНИЙ ФУНКЦИИ. ° РЕШАТЬ ЗАДАЧИ НА ОТЫСКАНИЕ НАИБОЛЬШИХ И НАИМЕНЬШИХ ЗНАЧЕНИЙ ФУНКЦИИ. Цели урока:

y y x x y x 00 0ааа b b b Y= f(x) Функция у = f(х) непрерывна на отрезке [a;b]. Найти наибольшее и наименьшее значение функций, графики которых предоставлены на рисунках. Сделать вывод о расположении точек, в которых функция достигает наибольшего(наименьшего) значений

Выводы 1.Если функция непрерывна на отрезке, то она достигает на нем и своего наибольшего, и своего наименьшего значений. 2.Наибольшего и наименьшего значений непрерывная функция может достигать как на концах отрезка, так и внутри него. 3.Если наибольшее (или наименьшее) значение достигается внутри отрезка, то только в стационарной или критической точке.

Найти наибольшее и наименьшее значение функции у = х³ - 3х² - 45х + 1 на [-4; 6] без построения графика. Задание 1.

Найти наибольшее и наименьшее значение функции у = х³ - 5х² + 7х на [-1; 2] без построения графика. Задание 2. Ответ: : у наим = у (-1) = -13; у наиб = у(1) = 3

Алгоритм нахождения наибольшего и наименьшего значений непрерывной функции у = f(x) на отрезке [a;b] 1. Найти производную f´(х) 2. Найти стационарные и критические точки функции, лежащие внутри oтрезка [a;b] 3. Вычислить значение функции у= f(x) в точках, отобранных на втором шаге, и в точках a и b. Выбрать среди этих значений наименьшее ( это будет у наим )и наибольшее (это будет у наиб )

а) если х = х о – точка максимума, то у наиб = f(x o ) y x Y= f(x) а b У наиб. хохо 0 y x Y= f(x) аb хохо 0 У наим. Теорема. Пусть функция у = f(x) непрерывна на промежутке Х и имеет внутри него единственную стационарную или критическую точку х = х о. Тогда: б) если х = х о – точка минимума, то у наим = f(x o )

Домашнее задание: §46, п.1.