Курс лекций по теоретической механике Статика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для студентов, обучавшихся по специальностям СЖД, ПГС и СДМ в НИИЖТе и МИИТе ( гг.). Учебный материал соответствует календарным планам в объеме трех семестров. Для полной реализации анимационных эффектов при презентации необходимо использовать средство просмотра Power Point не ниже, чем встроенный в Microsoft Office операционной системы Windows-ХР Professional. Запуск презентации – F5, навигация – Enter, навигационные клавиши, щелчок мыши, кнопки. Завершение – Esc. Замечания и предложения можно послать по Московский государственный университет путей сообщения (МИИТ) Кафедра теоретической механики Научно-технический центр транспортных технологий
Лекция 5. Лекция 5 Трение скольжения. Основные законы. Способы определения коэффициента трения. Угол трения. Конус трения. Учет сил трения при решении задач на равновесие. Сопротивление при качении.
Лекция 5 Трение скольжения. При действии сдвигающей силы, приложенной к телу, покоящемуся на шероховатой поверхности, возникает сила, противодействующая возможному смещению тела (сила трения сцепления) из равновесного положения или его действительному перемещению (сила трения скольжения) при его движении. Основные законы трения (Амонтона - Кулона): 1. Сила трения лежит в касательной плоскости к соприкасающимся поверхностям и направлена в сторону противоположную направлению, в котором приложенные к телу силы стремятся его сдвинуть или сдвигают в действительности (реактивный характер). 2. Сила трения изменяется от нуля до своего максимального значения Максимальная сила трения пропорциональна коэффициенту трения и силе нормального давления 3. Коэффициент трения есть величина постоянная для данного вида и состояния соприкасающихся поверхностей (f = const). 4. Сила трения в широких пределах не зависит от площади соприкасающихся поверхностей. Способы определения коэффициента трения. 1. Сдвигающая сила изменяется от нуля до своего максимального значения – 0 T T max, (0 P P max ). 2. Сила нормального давления изменяется от некоторого начального значения до минимального значения – N 0 N N min (G 0 G G min ). 3. Сдвигающая сила и сила нормального давления изменяются при изменении угла наклона плоскости скольжения от нуля до максимального значения – 0 φ φ max. Угол трения. С учетом силы трения, возникающей при контакте с шероховатой поверхностью полная реакция такой поверхности может рассматриваться как геометрическая сумма нормальной реакции абсолютно гладкой поверхности и силы трения: Угол отклонения полной реакции шероховатой поверхности – угол трения, равный: При изменении направления сдвигающей силы T на опорной поверхности ее поворотом относительно нормали к плоскости полная максимальная реакция шероховатой поверхности описывает конус трения. Активные силы (G, T и др.) можно заменить равнодействующей силой P, имеющей угол отклонения от вертикали α. Можно показать, что равновесие возможно лишь в том случае, когда эта сила остается внутри пространства конуса трения: Условие равновесия по оси x: Psinα F тр max. Из уравнения равновесия по оси у: N = Pcosα. Максимальная сила трения F тр max = fN = tgφN = tgφPcosα. Тогда Psinα tgφPcosα, откуда tgα tg φ и α φ. 15
Лекция 5 ( продолжение – 5.2 ) Учет сил трения при решении задач на равновесие. При наличии сил трения: 1.К действующим на объект активным силам и реакциям абсолютно гладких поверхностей добавляются соответствующие силы трения, направленные по общей касательной к контактным поверхностям в сторону, противоположную возможному смещению точки касания объекта относительно опорной шероховатой плоскости. 2.К уравнениям равновесия, составленным для объекта, добавляются выражения для максимальных сил трения в количестве, равном числу сил трения. Пример решения задачи на равновесие с учетом трения. Человек весом G собирается установить легкую лестницу под углом α к вертикали (стене) и взобраться на половину длины лестницы для выполнения работы. Коэффициенты трения в точках контакта лестницы с полом (A) и со стеной (B) равны f A и f B соответственно. Определить предельное значение угла наклона, при котором лестница с человеком может сохранять равновесие. Весом лестницы пренебречь. 1. Выбираем на объект (человек и лестница), отбрасываем связи и заменяем их действие реакциями гладкой поверхности. A B 2. Добавляем активные силы (силу тяжести G). 3. Добавляем силы трения, направленные в сторону, противоположную возможному перемещению контактных точек A и B лестницы под действием приложенной активной силы. 4. Составляем уравнения равновесия: 5. Добавляем выражения для сил трения: 6. Подстановка последних выражений в уравнения равновесия с простыми преобразованиями третьего уравнения дает : 7. Решение первых двух уравнений дает выражения для нормальных реакций: 8. Подстановка выражений для нормальных реакций в третье уравнение равновесия приводит к возможности определения предельного угла наклона α: Определение области равновесия. Задача решена для конкретного положения человека, угол наклона соответствует предельному равновесию (использованы максимальные значения сил трения). С помощью понятия конуса трения, образовываемого полной реакцией шероховатой поверхности и теоремы о трех силах можно определить область возможных равновесных положений человека на лестнице. Для этого достаточно по заданным коэффициентам трения определить углы трения, определяющие предельные положения полной реакции и построить конусы трения. Общая область конусов дает область равновесных положений человека. Хорошо видно, что для более высокого положения человека надо уменьшать угол наклона. A B 16
Лекция 5 ( продолжение 5.3 ) Сопротивление при качении. При действии сдвигающей силы, приложенной к катку, покоящемуся на шероховатой поверхности, возникает сила, противодействующая возможному смещению тела (сила трения сцепления) из равновесного положения или его действительному перемещению (сила трения скольжения) при его движении и пара сил, момент которой препятствует повороту катка (момент сопротивления качению). Возникновение пары сил, препятствующей качению, связана с деформацией опорной плоскости, в результате которой равнодействующая нормальных реактивных сил по площадке контакта смещена от линии действия силы тяжести в сторону возможного или действительного движения. Основные законы трения качения: 1. Момент сопротивления качению всегда направлен в сторону противоположную, тому направлению, в котором приложенные к телу силы стремятся его повернуть, или действительному повороту под действием этих сил (реактивный характер). 2. Момент сопротивления качению изменяется от нуля до своего максимального значения. Максимальный момент сопротивления качению пропорционален коэффициенту трения качения и силе нормального давления:. 3. Коэффициент трения качения есть величина постоянная для данного вида и состояния соприкасающихся поверхностей (fк = const). 4. Момент сопротивления качению в широких пределах не зависит от радиуса катка. Если коэффициент трения скольжения является безразмерной величиной, то коэффициент трения качения измеряется единицами длины и равен по величине указанному смещению равнодействующей нормального давления. В силу малости деформаций коэффициент трения качения имеет очень малую величину и составляет, например, для стального бандажа по стальному рельсу м. 17