Системы счисления 1. ВведениеВведение 2.Непозиционная система счисленияНепозиционная система счисления 3.Позиционная система счисленияПозиционная система.

Презентация:



Advertisements
Похожие презентации
СИСТЕМЫ СЧИСЛЕНИЯ УРОК-ЛЕКЦИЯ ПО ИНФОРМАТИКЕ ДЛЯ УЧАЩИХСЯ 10 КЛАССА.
Advertisements

Системы счисления 1.ВведениеВведение 2.Двоичная системаДвоичная система 3.Восьмеричная системаВосьмеричная система 4.Шестнадцатеричная системаШестнадцатеричная.
Определения Система счисления – это способ записи чисел с помощью специальных знаков – цифр. Числа: 123, 45678, , CXL Цифры: 0, 1, 2, … I, V, X,
Восьмеричная система Основание (количество цифр): 8 Алфавит: 0, 1, 2, 3, 4, 5, 6, = система счисления.
Системы счисления © К.Ю. Поляков, ВведениеВведение 2.Двоичная системаДвоичная система 3.Восьмеричная системаВосьмеричная система 4.Шестнадцатеричная.
Привет! Система счисления Система счисления способ записи чисел с помощью набора специальных знаков, называемых цифрами. Числа: 123, 45678, ,
Двоичная система счисления. 2 Перевод целых чисел Двоичная система: Алфавит: 0, 1 Основание (количество цифр):
Системы счисления Тема 1. Введение. 2 Определения Система счисления – это способ записи чисел с помощью специальных знаков – цифр. Числа: 123, 45678,
Системы счисления. 2 Определения Система счисления – это способ записи чисел с помощью специальных знаков – цифр. Числа: 123, 45678, , CXL Цифры:
Системы счисления Информатика и ИКТ 8 класс Гимназия 1 г. Новокуйбышевска Учитель информатики: Красакова О.Н.
Системы счисления © К.Ю. Поляков, ВведениеВведение 2.Двоичная системаДвоичная система 3.Восьмеричная системаВосьмеричная система 4.Шестнадцатеричная.
Системы счисления Тема 1. Введение. 2 Определения Система счисления – это способ записи чисел с помощью специальных знаков – цифр. Числа: 123, 45678,
Системы счисления © К.Ю. Поляков, ВведениеВведение 2.Двоичная системаДвоичная система 3.Восьмеричная системаВосьмеричная система 4.Шестнадцатеричная.
СИСТЕМЫ СЧИСЛЕНИЯ УРОК-ЛЕКЦИЯ ПО ИНФОРМАТИКЕ ДЛЯ СТУДЕНТОВ 1 КУРСА.
Системы счисления 1.ВведениеВведение 2.Двоичная системаДвоичная система 3.Восьмеричная системаВосьмеричная система 4.Шестнадцатеричная системаШестнадцатеричная.
Муниципальное бюджетное образовательное учреждение «Средняя общеобразовательная школа 29» Выполнил: учитель информатики Батова Анна Олеговна.
Системы счисления © К.Ю. Поляков, ВведениеВведение 2.Двоичная системаДвоичная система 3.Восьмеричная системаВосьмеричная система 4.Шестнадцатеричная.
Системы счисления Информатика и ИКТ 8 класс Гимназия 1 г. Новокуйбышевска Учитель информатики: Красакова О.Н.
1. Общее понятие о системах счисления 1. Общее понятие о системах счисления 2. Двоичная система счисления 2. Двоичная система счисления 3. Восьмеричная.
Системы счисления 10 класс. Что такое система счисления? Система счисления – это способ наименования и обозначения чисел десятичная двоичная восьмеричная.
Транксрипт:

Системы счисления 1. ВведениеВведение 2.Непозиционная система счисленияНепозиционная система счисления 3.Позиционная система счисленияПозиционная система счисления 4.Десятичная системаДесятичная система 5.Двоичная системаДвоичная система 6.Восьмеричная системаВосьмеричная система 7.Шестнадцатеричная системаШестнадцатеричная система

Как это было? Счет появился тогда, когда человеку потребовалось информировать своих сородичей о количестве обнаруженных им предметов. В разных местах придумывались разные способы передачи численной информации: от зарубок по числу предметов до хитроумных знаков - цифр. Во многих местах люди стали использовать для счета пальцы. Одна из таких систем счета и стала общеупотребительной – десятичная.

4 Определения Система счисления – это способ записи чисел с помощью специальных знаков – цифр. Числа: 123, 45678, , CXL Цифры: 0, 1, 2, … I, V, X, L, … Алфавит – это набор цифр. {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Системы счисления Непозиционная XXII VII каждой цифре соответствует величина, независящая от ее места в записи числа. Непозиционная XXII VII каждой цифре соответствует величина, независящая от ее места в записи числа. Позиционная величина числа зависит от номера позиции цифры при его записи Позиционная величина числа зависит от номера позиции цифры при его записи

7 Римская (500 лет до н.э.) Натуральные числа записываются при помощи повторения этих цифр. Например, II = = 2, здесь символ I обозначает 1 независимо от места в числе. Для правильной записи больших чисел римскими цифрами необходимо сначала записать число тысяч, затем сотен, затем десятков и, наконец, единиц. Пример: число Одна тысяча M, девять сотен CM, восемьдесят LXXX, восемь VIII. Запишем их вместе: MCMLXXXVIII. MCMLXXXVIII = 1000+( )+( ) = 1988 Для изображения чисел в непозиционной системе счисления нельзя ограничится конечным набором цифр. Кроме того, выполнение арифметических действий в них крайне неудобно.

Где используется: номера глав в книгах: обозначение веков: «Пираты XX века» циферблат часов

Позиционной называют систему счисления, в которой число представляется в виде последовательности цифр, количественное значение которых зависит от места (позиции), которое занимает каждая из них в числе позиция * 1 2 позиция * 10 3 пзиция * 100 * (10 3 ) (10 2 ) (10 1 ) (10 0 ) Количество используемых цифр называется основанием системы счисления. Например, 11 – это одиннадцать, а не два: = 2 (сравните с римской системой счисления). Здесь символ 1 имеет различное значение в зависимости от позиции в числе.

Система счисления Основан ие Алфавит цифр Десятичная100, 1, 2, 3, 4, 5, 6, 7, 8, 9 Двоичная20, 1 Восьмеричная80, 1, 2, 3, 4, 5, 6, 7 Шестнадцатеричная160, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F (10,11,12,13,14,15)

Десятичная система счисления Десятичная система: первоначально – счет на пальцах разряды сотни десятки единицы = 3· · ·10 0

16 Перевод целых чисел Двоичная система: Алфавит: 0, 1 Основание (количество цифр): = система счисления разряды = 1· · · · ·2 0 = = 19

17 Примеры: 131 =79 =

18 Примеры: = =

20 Восьмеричная система Основание (количество цифр): 8 Алфавит: 0, 1, 2, 3, 4, 5, 6, = система счисления разряды = 1· · ·8 0 = = 100

21 Примеры: 134 =75 = = 75 8 =

22 Перевод в двоичную и обратно трудоемко 2 действия трудоемко 2 действия 8 = 2 3 Каждая восьмеричная цифра может быть записана как три двоичных (триада)! ! = { {{{

23 Таблица восьмеричных чисел X 10 X8X8 X2X2 X8X8 X2X

24 Перевод из двоичной системы Шаг 1. Разбить на триады, начиная справа: Шаг 2. Каждую триаду записать одной восьмеричной цифрой: Ответ: =

25 Примеры: = = =

26 Примеры: = = =

28 Шестнадцатеричная система Основание (количество цифр): 16 Алфавит: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, = 6B 16 система счисления 1C разряды = 1· · ·16 0 = = 453 A, 10 B, 11 C, 12 D, 13 E, 14 F 15 B B C C

29 Примеры: 171 = 206 = 1BC 16 = 22B 16 =

30 Таблица шестнадцатеричных чисел X 10 X 16 X2X2 X 10 X 16 X2X A B C D E F1111

31 Перевод в двоичную систему трудоемко 2 действия трудоемко 2 действия 16 = 2 4 Каждая шестнадцатеричная цифра может быть записана как четыре двоичных (тетрада)! ! 7F1A 16 = 7 F 1 A 0111 {{ {{

32 Перевод из двоичной системы Шаг 1. Разбить на тетрады, начиная справа: Шаг 2. Каждую тетраду записать одной шестнадцатеричной цифрой: E E F F Ответ: = 12EF 16

33 Примеры: C73B 16 = 2FE1 16 =

34 Примеры: = = =

35 Перевод в восьмеричную и обратно трудоемко 3DEA 16 = Шаг 1. Перевести в двоичную систему: Шаг 2. Разбить на триады: Шаг 3. Триада – одна восьмеричная цифра: DEA 16 =

36 Примеры: A35 16 = =

37 Перевод дробных чисел ,375 = 2 101, разряды = 1· · · ·2 -3 = ,25 + 0,125 = 5,375, ,75 2, ,5 2, ,7 = ? 0,7 = 0, … = 0,1(0110) 2 Многие дробные числа нельзя представить в виде конечных двоичных дробей. Для их точного хранения требуется бесконечное число разрядов. Большинство дробных чисел хранится в памяти с ошибкой = = 0, ,011 2

38 Арифметические операции сложение вычитание 0+0=0 0+1=1 1+0=1 1+1= = =0 0+1=1 1+0=1 1+1= = =0 1-1=0 1-0= =1 0-0=0 1-1=0 1-0= =1 перенос заем –

0 · 0 = 0 1 · 0 = 1 1 · 1 = Примеры:

Арифметические операции умножение деление – –