ДВУГРАННЫЙ УГОЛ. УГОЛ МЕЖДУ ПЛОСКОСТЯМИ Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой. Линейным углом.

Презентация:



Advertisements
Похожие презентации
ДВУГРАННЫЙ УГОЛ Двугранным углом называется фигура (рис. 1), образованную двумя полуплоскостями, с общей ограничивающей их прямой, и частью пространства,
Advertisements

ДВУГРАННЫЙ УГОЛ Двугранным углом называется фигура (рис. 1), образованная двумя полуплоскостями, с общей ограничивающей их прямой, и частью пространства,
ДВУГРАННЫЙ УГОЛ. УГОЛ МЕЖДУ ПЛОСКОСТЯМИ Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой. Линейным углом.
ДВУГРАННЫЙ УГОЛ. УГОЛ МЕЖДУ ПЛОСКОСТЯМИ Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой. Линейным углом.
Угол между прямыми в пространстве Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
1. В кубе A…D 1 найдите угол между прямыми AB 1 и BC 1. Ответ: 60 o.
ДВУГРАННЫЙ УГОЛ. УГОЛ МЕЖДУ ПЛОСКОСТЯМИ Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой. Линейным углом.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
ДВУГРАННЫЙ УГОЛ Двугранным углом называется фигура (рис. 1), образованную двумя полуплоскостями, с общей ограничивающей их прямой, и частью пространства,
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающи- мися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
Угол в пространстве Углом в пространстве называется фигура, образованная двумя лучами с общей вершиной и одной из частей плоскости, ограниченной этими.
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающи- мися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
Презентация к уроку геометрии (10 класс) по теме: Перпендикулярность прямых и плоскостей
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
Транксрипт:

ДВУГРАННЫЙ УГОЛ. УГОЛ МЕЖДУ ПЛОСКОСТЯМИ Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой. Линейным углом двугранного угла называется угол, образованный лучами с вершиной на граничной прямой, стороны которого лежат на гранях двугранного угла и перпендикулярны граничной прямой. Величиной двугранного угла называется величина его линейного угла. Углом между двумя пересекающимися плоскостями называется наименьший из двугранных углов, образованных этими плоскостями.

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите угол между плоскостями ABC и ABB 1. Ответ: 90 о.

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите угол между плоскостями ABB 1 и BCC 1. Ответ: 120 о.

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите угол между плоскостями ABB 1 и CDD 1. Ответ: 60 о.

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите угол между плоскостями ACC 1 и CDD 1. Ответ: 90 о.

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите угол между плоскостями ACC 1 и DEE 1. Ответ: 30 о.

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите угол между плоскостями ACC 1 и CEE 1. Ответ: 60 о.

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите угол между плоскостями ABC и BCD 1. Ответ: В прямоугольном треугольнике O 1 GO имеем: OO 1 = 1, OG =. Следовательно, Решение: Искомый угол равен углу O 1 GO, где O, O 1 – центры оснований призмы, G – середина BC.

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите угол между плоскостями ABC и BCE 1. Ответ:. В прямоугольном треугольнике E 1 CE имеем: EE 1 = 1, CE =, CE 1 = 2. Следовательно,. Решение: Искомый угол равен углу E 1 CE.

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите угол между плоскостями ABC и BDE 1. Ответ:. Решение: Искомый угол равен углу E 1 DE. Он равен 45 о.

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите угол между плоскостями ABC и BDF 1. Ответ: Решение: Искомый угол равен углу F 1 GF, где G – середина BD. В прямоугольном треугольнике F 1 GF имеем: FF 1 = 1, FG = Следовательно,

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите угол между плоскостями ABC и ADE 1. Ответ: Решение: Искомый угол равен углу E 1 GE, где G – середина CE. В прямоугольном треугольнике E 1 GG имеем: EE 1 = 1, EG = Следовательно,

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите угол между плоскостями CDE 1 и AFE 1. Ответ: Решение: Пусть O, O 1 – центры оснований призмы, P, Q – середины ребер AF и CD. Искомый угол равен углу PO 1 Q. В треугольнике PO 1 Q имеем: PO 1 = QO 1 =, PQ = Из теоремы косинусов получаем

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите угол между плоскостями CDF 1 и AFD 1. Ответ: Решение: Пусть O – центр призмы, G, G 1 – середины ребер CD и C 1 D 1. Искомый угол равен углу GOG 1. В треугольнике GOG 1 имеем: GG 1 = GO = G 1 O = 1. Следовательно, = 60 о.

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите угол между плоскостями BCD 1 и AFE 1. Ответ: Решение: Пусть O, O 1 – центры боковой грани и верхнего основания призмы. Искомый угол равен углу A 1 GB 1, где G – середина OO 1. В треугольнике A 1 GB 1 имеем: A 1 B 1 = 1, A 1 G = B 1 G = Из теоремы косинусов получаем