«Порядок и хаос» Невозможный мир М.К. Эшера Авторы работы: Клюева Ольга Павленко Антон 10в.

Презентация:



Advertisements
Похожие презентации
Эшер, Мауриц Корнелис Ма́уриц Корне́лис Э́шер (нидерл. Maurits Cornelis Escher; нидерл. 17 июня 17 июня марта 1972) голландский художник-график.
Advertisements

Многогранники в искусстве «Поистине, живопись наука и законная дочь природы, ибо она порождена природой» (Леонардо да Винчи)
І этап «» Название Из каких многоугольников составлен Сколько граней, ребер, вершин имеет этот многогранник Число сторон у грани Число ребер, примыкающих.
Ученики 10 класса МОУ «СОШ п. Сергиевский». Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой.
Моделирование правильных многогранников 10 классВыпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники и в.
Обирина Людмила Ивановна Преподаватель КГБОУ СПО « НПК » Геометрические фигуры в пространстве Норильск, 2015.
Тайны Платоновых тел Правильные многогранники. Платон (Аристотель). Платон, которого еще при жизни за мудрость называли божественным, родился 21 мая 429.
Многогранники в природе и жизни человека Оганесян Л.
Презентация на тему "Правильные многогранники"
Куб составлен из шести квадратов. Каждая вершина куба является вершиной трех квадратов. Существует 11 правильных разверток куба. куб.
Многогранники
Классификация многогранников: Правильные многогранники Призмы Пирамиды - тела, состоящие из конечного числа плоских многоугольников.
Ховаева Екатерина, 10 класс. Правильный многогранник, или Платоново тело это выпуклый многогранник с максимально возможной симметрией. Многогранник называется.
Правильные многогранники.
Выполнила ученица 10 класса Мялинцева Любовь. 1. Понятие многогранника 2. Определение правильного многогранника 3. Сколько существует правильных многогранников.
Презентация на тему «Правильные многогранники» Выполнил Ученик 10 класса Гайль Кирилл.
Введение Живопись Портрет Луки Пачоли Божественные пропорции Порядок и хаос Звезда Архитектура Александрийский маяк Великая пирамида Царская гробница.
Выпуклые многогранники Авторы: Гордиенко Юлия; Немчинова Анастасия 10 «б»
Правильные многогранники. Понятие правильного многогранника Выпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники.
Автор работы : Абрамова Елена Сергеевна, ученица 10 а класса Руководитель : Светлова Татьяна Михайловна, учитель математики I квалификационной категории.
Транксрипт:

«Порядок и хаос» Невозможный мир М.К. Эшера Авторы работы: Клюева Ольга Павленко Антон 10в

Все мои произведения это игры. Серьезные игры. М. Эшер "Если мы создаем мир, то пусть он будет не абстрактным и туманным. Пусть он будет представлен конкретными узнаваемыми вещами." "Если мы создаем мир, то пусть он будет не абстрактным и туманным. Пусть он будет представлен конкретными узнаваемыми вещами."

М.К. Эшер

«Порядок и хаос» Звездный додекаэдр (двенадцатигранник), расположенный в центре, как мыльным пузырем, накрыт прозрачной сферой. В этом символе порядка и красоты отражается хаос в виде гетерогенного собрания ненужных, разбитых и сплющенных предметов. Звездный додекаэдр (двенадцатигранник), расположенный в центре, как мыльным пузырем, накрыт прозрачной сферой. В этом символе порядка и красоты отражается хаос в виде гетерогенного собрания ненужных, разбитых и сплющенных предметов.

М. Эшер о себе: «Я так ни разу и не смог получить хорошей оценки по математике. Забавно, что я неожиданно оказался связанным с этой наукой. Поверьте, в школе я был очень плохим учеником. И вот теперь математики используют мои рисунки для иллюстрации своих книг. Представьте себе, эти ученые люди принимают меня в свою компанию как потерянного и вновь обретенного брата! Они, кажется, не подозревают, что математически я абсолютно безграмотен». «Я так ни разу и не смог получить хорошей оценки по математике. Забавно, что я неожиданно оказался связанным с этой наукой. Поверьте, в школе я был очень плохим учеником. И вот теперь математики используют мои рисунки для иллюстрации своих книг. Представьте себе, эти ученые люди принимают меня в свою компанию как потерянного и вновь обретенного брата! Они, кажется, не подозревают, что математически я абсолютно безграмотен».

Многогранники Правильные геометрические тела - многогранники - имели особое очарование для Эшера. Во его многих работах многогранники являются главной фигурой и в еще большем количестве работ они встречаются в качестве вспомогательных элементов. Правильные геометрические тела - многогранники - имели особое очарование для Эшера. Во его многих работах многогранники являются главной фигурой и в еще большем количестве работ они встречаются в качестве вспомогательных элементов. Существует лишь пять правильных многогранников, то есть таких тел, все грани которых состоят из одинаковых правильных многоугольников. Они еще называются телами Платона. Существует лишь пять правильных многогранников, то есть таких тел, все грани которых состоят из одинаковых правильных многоугольников. Они еще называются телами Платона. Это - тетраэдр, гранями которого являются четыре правильных треугольника, куб с шестью квадратными гранями, октаэдр, имеющий восемь треугольных граней, додекаэдр, гранями которого являются двенадцать правильных пятиугольников, и икосаэдр с двадцатью треугольными гранями. Это - тетраэдр, гранями которого являются четыре правильных треугольника, куб с шестью квадратными гранями, октаэдр, имеющий восемь треугольных граней, додекаэдр, гранями которого являются двенадцать правильных пятиугольников, и икосаэдр с двадцатью треугольными гранями.

О картине: Большое количество различных многогранников может быть получено объединением правильных многогранников, а также превращением многогранника в звезду. Для преобразования многогранника в звезду необходимо заменить каждую его грань пирамидой, основанием которой является грань многогранника. Большое количество различных многогранников может быть получено объединением правильных многогранников, а также превращением многогранника в звезду. Для преобразования многогранника в звезду необходимо заменить каждую его грань пирамидой, основанием которой является грань многогранника. Изящный пример звездчатого додекаэдра можно найти в работе "Порядок и хаос". В данном случае звездчатый многогранник помещен внутрь стеклянной сферы. Необычная красота этой конструкции контрастирует с беспорядочно разбросанным по столу мусором. Изящный пример звездчатого додекаэдра можно найти в работе "Порядок и хаос". В данном случае звездчатый многогранник помещен внутрь стеклянной сферы. Необычная красота этой конструкции контрастирует с беспорядочно разбросанным по столу мусором.Порядок и хаосПорядок и хаос Заметим также, что анализируя картину можно догадаться о природе источника света для всей композиции - это окно, которое отражается левой верхней части сферы. Заметим также, что анализируя картину можно догадаться о природе источника света для всей композиции - это окно, которое отражается левой верхней части сферы.

О других работах с многогранниками Фигуры, полученные объединением правильных многогранников, можно встретить во многих работах Эшера. Наиболее интересной среди них является гравюра "Звезды", на которой можно увидеть тела, полученные объединением тетраэдров, кубов и октаэдров. Если бы Эшер изобразил в данной работе лишь различные варианты многогранников, мы никогда бы не узнали о ней. Но он по какой-то причине поместил внутрь центральной фигуры хамелеонов, чтобы затруднить нам восприятие всей фигуры. Фигуры, полученные объединением правильных многогранников, можно встретить во многих работах Эшера. Наиболее интересной среди них является гравюра "Звезды", на которой можно увидеть тела, полученные объединением тетраэдров, кубов и октаэдров. Если бы Эшер изобразил в данной работе лишь различные варианты многогранников, мы никогда бы не узнали о ней. Но он по какой-то причине поместил внутрь центральной фигуры хамелеонов, чтобы затруднить нам восприятие всей фигуры. Таким образом нам необходимо отвлечься от привычного восприятия картины и попытаться взглянуть на нее свежим взором, чтобы представить ее целиком. Этот аспект данной картины является еще одним предметом восхищения математиков творчеством Эшера. Таким образом нам необходимо отвлечься от привычного восприятия картины и попытаться взглянуть на нее свежим взором, чтобы представить ее целиком. Этот аспект данной картины является еще одним предметом восхищения математиков творчеством Эшера.

Другие работы Эшера «Concentric rinds» «Drawing Hands»

Лента Мебиуса продольная гравюра, Замкнутая кольцеобразная полоса на первый взгляд имеет две поверхности – внешнюю и внутреннюю. Вы видите, как девять красных муравьев один за другим ползут и по той, и по другой. Тем не менее это полоса с односторонней поверхностью 1963.продольная гравюра, Замкнутая кольцеобразная полоса на первый взгляд имеет две поверхности – внешнюю и внутреннюю. Вы видите, как девять красных муравьев один за другим ползут и по той, и по другой. Тем не менее это полоса с односторонней поверхностью

Ещё несколько работ М.Эшера

«Ascending and descending»

«Circle Limit III» «Butterflys»

«Tetrahedal Planetoid»

«Dragon» «Eye»

Перед нами – совершенно невозможное целое, поскольку в интерпретации расстояния между объектом и наблюдателем возникают неожиданные изменения. Падающая вода приводит в движение мельничное колесо и течет по наклонному зигзагообразному желобу между двумя башнями, возвращаясь к точке, где водопад начинается снова. Кажется, что обе башни одинаковой высоты; но тем не менее, та что справа, оказывается этажом ниже, чем башня слева Перед нами – совершенно невозможное целое, поскольку в интерпретации расстояния между объектом и наблюдателем возникают неожиданные изменения. Падающая вода приводит в движение мельничное колесо и течет по наклонному зигзагообразному желобу между двумя башнями, возвращаясь к точке, где водопад начинается снова. Кажется, что обе башни одинаковой высоты; но тем не менее, та что справа, оказывается этажом ниже, чем башня слева «Towers»

Четырёхугольная планета Эта малая планета, населенная людьми, имеет форму правильного четырехгранника и окружена сферической атмосферой. Видны 2 из 4 грани тетраэдра; ребро делит изображение надвое. Все вертикальные линии: стены домов, деревья и люди – направлены к центру тяжести, а все горизонтальные поверхности: сады, улицы, крыши, вода прудов и каналов – составляют часть сферической оболочки. Эта малая планета, населенная людьми, имеет форму правильного четырехгранника и окружена сферической атмосферой. Видны 2 из 4 грани тетраэдра; ребро делит изображение надвое. Все вертикальные линии: стены домов, деревья и люди – направлены к центру тяжести, а все горизонтальные поверхности: сады, улицы, крыши, вода прудов и каналов – составляют часть сферической оболочки. «Tetrahedal Planetoid»

Использованные источники В работе использованы материалы глобальной сети Internet В работе использованы материалы глобальной сети Internet Материалы Большого Энциклопедического Словаря Материалы Большого Энциклопедического Словаря Русско-английский словарь Русско-английский словарь

Работу выполнили: Ученики 10 «В» класса Ученики 10 «В» класса Клюева Ольга Клюева Ольга Павленко Антон Павленко Антон