Презентация на тему: «Золотое сечение в живой природе» Подготовила: Ученица 11-а класса Мидловец Анастасия.

Презентация:



Advertisements
Похожие презентации
Золотое сечение, золотая пропорция, гармоническое деление, деление в крайнем и среднем отношении это деление отрезка длины a на две части таким образом,
Advertisements

a : b = b : c= 1,6 a : b = b : c = 1,6 «З ОЛОТАЯ П РОПОРЦИЯ » - ГЛАВНЫЙ ЭСТЕТИЧЕСКИЙ ПРИНЦИП ЭПОХИ С РЕДНЕВЕКОВЬЯ Эпоха Возрождения ассоциируется с именами.
Принципы формообразования в природе Работу подготовила: ученица 8Б класса средней школы 16 Нарватова Наташа.
Математика в природе Подготовил: Усманов Усман ученик 11 класса.
ЗОЛОТОЕ СЕЧЕНИЕ В ПРИРОДЕ Выполнила : Ученица 8 класса В МАОУ СОШ 77 Берсенёва Юля.
Человек различает окружающие его предметы по форме. Интерес к форме какого - либо предмета может быть продиктован жизненной необходимостью, а может быть.
Выполнил: Ученик 10 кл Сивожелезов Михаил МОУ СОШ 7 г.Соль Илецк Оренбургской обл.
ЗОЛОТОЕ СЕЧЕНИЕ. История золотого сечения Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор Принято считать, что понятие о.
Золоте сечение в природе. Введение Есть только два сокровища - теорема Пифагора и золотое сечение, если первое из них можно сравнить с мерой золота, то.
Золотое сечение Подготовила ученица 11-А класса Олейник Дарья в природе.
Золотое сечение в растениях Выполнила: Колчина Л.А.
« Золотое сечение » в природе « Золотое сечение » в природе Сокровище геометрии МБОУ « ТСОШ 2» Преподаватель Дмитриева Ирина Николаевна Ученица 8 А класса.
Цель: Выяснить, Какова вероятность встретить золотое сечение в природе? Работа учеников: Артемьева Максима, 6 класс Попкова Дениса, 7 класс Юшкевича Максима,
Пифагор ( г.г. До н. э.) Евдокс ( г.г. До н. э.) Леонардо да Винчи ( г.г.) Пропорции, т. е. равенства отношений изучались пифагорейцами.
Учебный проект Тема: От математики к красоте и гармонии Презентация ученика 6 класса Вишнякова Петра.
Математика вокруг нас Человек различает окружающие его предметы по форме. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения,
Золотое сечение Хен Евгения Группа Л11-5 Реферат.
История Золотого сечения; в математике ; в анатомии человеческого тела ; в скульптуре ; в архитектуре ; в природе ; в поэзии и музыке.
Золотое Сечение Выполнила: Аристова Надя, Ученица 8 класса.
ЗОЛОТОЕ СЕЧЕНИЕ В природе Подготовила : Ученица 11 А класса Бурашникова Наталья.
Транксрипт:

Презентация на тему: «Золотое сечение в живой природе» Подготовила: Ученица 11-а класса Мидловец Анастасия

Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип золотого сечения – высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе.

Золотое сечение (золотая пропорция, деление в крайнем и среднем отношении) деление непрерывной величины на две части в таком отношении, при котором меньшая часть так относится к большей, как большая ко всей величине.

В биологических исследованиях гг. показано, что, начиная с вирусов и растений и кончая организмом человека, всюду выявляется золотая пропорция, характеризующая соразмерность и гармоничность их строения. Золотое сечение признано универсальным законом живых систем. Можно отметить два вида проявлений золотого сечения в живой природе: иррациональные отношения по Пифагору и целочисленные, дискретные - по Фибоначчи. Было установлено, что числовой ряд чисел Фибоначчи характеризует структурную организацию многих живых систем. Например, винтовое листорасположение на ветке составляет дробь, соответствующую рядам Фибоначчи.

Хорошо известна "золотая" пропорция пятилепестковых цветков яблони, груши и многих других растений. Носители генетического кода - молекулы ДНК и РНК - имеют структуру двойной спирали; ее размеры почти полностью соответствуют числам ряда Фибоначчи.

Еще Гете подчеркивал тенденцию природы к спиральности. Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Гете называл спираль "кривой жизни". Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Спираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Совместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке, семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения.

Приглядимся внимательно к побегу цикория. От основного стебля образовался отросток. Тут же расположился первый листок. Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий – 38, четвертый – 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.

У многих бабочек соотношение размеров грудной и брюшной части тела отвечает золотой пропорции. Сложив крылья, ночная бабочка образует правильный равносторонний треугольник. Но стоит развести крылья, и вы увидите тот же принцип членения тела на 2,3,5,8. Стрекоза также создана по законам золотой пропорции: отношение длин хвоста и корпуса равно отношению общей длины к длине хвоста.

В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции – длина ее хвоста так относится к длине остального тела, как 62 к 38. Можно заметить золотые пропорции, если внимательно посмотреть на яйцо птицы. Форма птичьих яиц описывается золотым сечением. Сегодня уже установлено, что при такой конфигурации прочностные характеристики оболочки оказываются наиболее высокими.

Золотое сечение можно найти и в анатомии. Закон золотого сечения просматривается в количественном членении человеческого тела, соответствующем числам ряда Фибоначчи. Примером может быть число костей туловища, черепа и конечностей. Так, в скелете туловища различают 3 костных системы: позвоночник, реберный его отдел и грудину. Грудина включает 3 кости (рукоятку, тело и мечевидный отросток). Позвоночник состоит из 33 (34) позвонков; от них отходят пар ребер. Мозговой череп состоит из 8 костей. В верхней и нижней челюстях с каждой стороны имеется по 8 альвеол и соответственно - корни 8 зубов.

Скелет верхней конечности состоит из 3 частей (плечевой, костей предплечья и костей кисти). Кисть включает 8 костей запястья, 5 пястных костей и кости 5 пальцев. Каждый палец, кроме большого, имеет по 3 фаланги. Таким образом, морфогенез кисти, включающей два соседних члена числового ряда Фибоначчи - в частности, 8 костей запястья и 5 костей пясти - приближается к золотому сечению 1.618, поскольку 8/5=1.6. Сопоставляя длины фаланг пальцев и кисти руки в целом, а также расстояния между отдельными частями лица, также можно найти "золотые" соотношения:

Скульпторы утверждают, что талия делит совершенное человеческое тело в отношении золотого сечения. Измерения нескольких тысяч человеческих тел позволили обнаружить, что для взрослых мужчин это отношение равно в среднем примерно 13/8 = 1,625, а для взрослых женщин оно составляет 8/5 = 1,6.. Так что пропорции мужчин ближе к "золотому сечению", чем пропорции женщин (однако женщина в обуви на каблуках может оказаться ближе к "золотым" пропорциям). У новорожденного пропорция составляет отношение 1 : 1, к 13 годам она равна 1,6, а к 21 году у мужчин равняется 1,625. Пропорции золотого сечения проявляются и в отношении других частей тела - длина плеча, предплечья и кисти, кисти и пальцев

Деятельность сердца связана с периодической сменой двух противоположных, функционально дополняющих друг друга состояний сердечной мышцы - систолы (напряжения) и диастолы (расслабления). Установлено, что для каждого вида животных существует частота сердцебиений nзс, при которой длительности систолы, диастолы и всего кардиоцикла соотносятся между собою по пропорции "золотого сечения". "Золотая" частота практически равна сердечному ритму здоровых, физически активных организмов в покое. "Золотой" режим кровоснабжения всего организма (и самого сердца в частности) является наиболее экономичным по сравнению с другими режимами, соответствующими различным уровням нагрузки: чем больше с увеличением нагрузки временная структура отклоняется от "золотого" соотношения (n/nзс = 1), тем больше энергетическая "цена" изгнания единичного объема крови.