Работу выполнил ученик 10 класса Какорин Владислав.

Презентация:



Advertisements
Похожие презентации
Бондаренко А.А., учитель МБОУ СОШ 37 г. Ставрополя.
Advertisements

Параллелепипед Параллелепипед – поверхность, составленная из шести параллелограммов.
Учитель 1 категории Попова В.В. МБОУ СОШ 3. Тетраэдр Тетраэдр – поверхность, составленная из четырех треугольников. многогранником Поверхность, составленную.
ПОНЯТИЕ МНОГОГРАННИКА. Что такое тетраэдр? Это геометрическое тело (поверхность), составленная из четырех треугольников.
Призма Многогранник, составленный из двух равных многоугольников A 1 A 2 …A n и B 1 B 2 …B n, расположенных в параллельных плоскостях, и n параллелограммов,
Параллелепипед Параллелепипед – поверхность, составленная из шести параллелограммов.
Параллелепипед Параллелепипед – поверхность, составленная из шести параллелограммов.
Призма Многогранник, составленный из двух равных многоугольников A 1 A 2 …A n и B 1 B 2 …B n, расположенных в параллельных плоскостях, и n параллелограммов,
Выполнила Ученица 10 И-Л класса Ломжева Екатерина.
Призма А 1 А 1 А 2 А 2 АnАn B1B1 B2B2 nBnnBn B3B3 А 3 А 3 n Многогранник, составленный из двух равных многоугольников А 1 А 2 …А n и В 1 В 2 …В n, расположенных.
Муниципальное общеобразовательное учреждение Голицынская средняя общеобразовательная школа – 2010 учебный год Голицыно Автор: ученица 11 «А» класса.
Призма А В E A1A1 B1B1 D С Призмой называется многогранник, состоящий из двух плоских многоугольников, совмещаемых параллельным переносом, и всех отрезков,
Многогранники. Многогранником называется ограниченное тело, поверхность которого состоит из конечного числа многоугольников.
Многогранником называется поверхность, составленная из многоугольников, ограничивающих некоторое геометрическое тело.
Понятие Многогранника. Призма. А 1 А 1 А 2 А 2 АnАn B1B1 B2B2 nBnnBn B3B3 А 3 А 3 n Многогранник, составленный из двух равных многоугольников А 1 А 2.
Двугранный угол Двугранный угол – это фигура, образованная двумя полуплоскостями с общей ограничивающей их прямой. Грань Ребро Грань Линейный угол.
Классификация многогранников: Правильные многогранники Призмы Пирамиды - тела, состоящие из конечного числа плоских многоугольников.
ГЕОМЕТРИЧЕСКИЕ ТЕЛА. Классификация ГЕОМЕТРИЧЕСКИЕ ТЕЛА МНОГОГРАННИКИ ТЕЛА ВРАЩЕНИЯ ПРИЗМА ПИРАМИДА ПРАВИЛЬНЫЕ МНОГОГРАННИКИ ЦИЛИНДР КОНУС ШАР.
Гороховой Юлии 11 « А » школа 531. Призма - это многогранник, в основаниях которого лежат равные многоугольники, а боковые грани - параллелограмы.
Многогранник это поверхность, составленная из многоугольников и ограничивающая некоторое геометрическое тело.
Транксрипт:

Работу выполнил ученик 10 класса Какорин Владислав

Параллелепипед Параллелепипед – поверхность, составленная из шести параллелограммов.

Тетраэдр Тетраэдр – поверхность, составленная из четырех треугольников. многогранником Поверхность, составленную из многоугольников и ограничивающую некоторое геометрическое тело, будем называть многогранной поверхностью или многогранником. С А В SS

Октаэдр Октаэдр составлен из восьми треугольников. Многоугольники, из которых составлен многогранник, называютсягранями. ребрами, вершинами Стороны граней называются ребрами, а концы ребер – вершинами. диагональю Отрезок, соединяющий две вершины, не принадлежащие одной грани, называется диагональю многогранника.

Прямоугольный параллелепипед выпуклым Многогранник называется выпуклым, если он расположен по одну сторону от плоскости каждой его грани.

Невыпуклый многогранник

Призма А1А1 А2А2 АnАn B1B1 B2B2 nBnnBn B3B3 А3А3 n Многогранник, составленный из двух равных многоугольников А 1 А 2 …А n и В 1 В 2 …В n, расположенных в параллельных плоскостях, и n параллелограммов, называется призмой. n-угольная призма. Многоугольники основания призмы А 1 А 2 …А n и В 1 В 2 …В n – основания призмы. боковые грани призмы Параллелограммы А 1 В 1 В 2 В 2, А 2 В 2 В 3 А 3 и т.д. боковые грани призмы

Призма А1А1 А2А2 АnАn B1B1 B2B2 nBnnBn B3B3 А3А3 Отрезки А 1 В 1, А 2 В 2 и т.д. - боковые ребра призмы высотой призмы Перпендикуляр, проведенный из какой- нибудь точки одного основания к плоскости другого основания, называется высотой призмы.

прямой, наклонной Если боковые ребра перпендикулярны к основаниям, то призма называется прямой, в противном случае наклонной. Высота прямой призмы равна ее боковому ребру.

правильной, Прямая призма называется правильной, если ее основания - правильные многоугольники. У такой призмы все боковые грани – равные прямоугольники.

Площадью полной поверхности призмы площадью боковой поверхности призмы Площадью полной поверхности призмы называется сумма площадей всех граней, а площадью боковой поверхности призмы – сумма площадей ее боковых граней.