УРОК – ПРЕЗЕНТАЦИЯ. ТЕМА : Определение геометрической прогрессии. Формула n-го члена геометрической прогрессии Учитель математики МОУ СОШ 1 г. Дубны Куркова Наталья Николаевна
ЦЕЛЬ УРОКА : Формирование понятия геометрической прогрессии, используя сопоставление и противопоставления понятию арифметической прогрессии. Познакомить со свойствами геометрической прогрессии и формулой n- го члена. Закрепить на примерах решения задач.
Содержание урока: 1. Самостоятельная работа с проверкой в классе. 2. Организация изучения понятия геометрической прогрессии и введение формулы n-го члена геометрической прогрессии. 3. Первичное применение знаний и умений. 4. Подведение итогов работы на уроке.
Самостоятельная работа Самостоятельная работа
1 вариант 2 вариант В заданиях 1-3 дана арифметическая прогрессия. Найдите: 1 вариант 2 вариант 1. тридцать второй член, если первый член 65 и разность сумму десяти первых членов, если а = 3n-1, n – натуральное число. 3. сумму семи первых членов прогрессии 8;4;0;… 4. Продолжите числовую последовательность, записав еще 2 члена: 1;2;4;… 1. двадцать третий член, если первый член -9 и разность сумму десяти первых членов, если а = 4n+2, n – натуральное число. 3. сумму семи первых членов прогрессии -5;-3;-1;… 4. Продолжите числовую последовательность, записав еще 2 члена: -2;6;-18;…
Ответы к самостоятельной работе: 1 ВАРИАНТ ; 32 2 ВАРИАНТ ;-162
Изучение понятия геометрической прогрессии и вывод формулы n-го члена геометрической прогрессии.
4 задание 1 вариант 2 вариант 1; 2; 4; 8; 16; ; 6; -18; 54; -162; ( -3) 6 ( -3) -18 ( -3) 54 ( -3)
Геометрической прогрессией называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и тоже число.
Для того чтобы подсчитать величину награды, надо сложить зерна, лежащие на всех клеточках доски.
Определение d Числовая последовательность, в которой каждый следующий член получается из предыдущего прибавлением одного и того же числом d,называется арифметической прогрессией. q Числовая последовательность отличных от нуля чисел, в которой каждый следующий член получается из предыдущего умножением на одно и тоже число q, называется геометрической прогрессией.
d разностью Число d – называется разностью арифметической прогрессии. q знаменателем Число q – называется знаменателем геометрической прогрессии.
Обозначение Арифметическая прогрессия Геометрическая прогрессия
Допустимые значения Арифметическая прогрессия любые числа Геометрическая прогрессия числа неравные нулю
Рекуррентная формула Арифметическая прогрессияГеометрическаяпрогрессия
Нахождение разность арифметической разность арифметической прогрессии прогрессии знаменатель геометрической прогрессии знаменатель геометрической прогрессии
Используя рекуррентную формулу, получим формулу общего члена геометрической прогрессии.
Итак,
Формула n-го члена арифметическаяпрогрессия геометрическаяпрогрессия
Характеристическое свойство арифметическаяпрогрессиягеометрическаяпрогрессия или
Геометрическая прогрессия в геометрии:
Решение задач Решение задач
Задача 1 Найдите первые 5 членов геометрической прогрессии, если первый член -2, а знаменатель Ответ: -2; 1; -0,5; 0,25; - 0,125
Задача 2. В правильный треугольник, сторона которого равна 16 см, вписан второй треугольник так, что его вершинами являются середины сторон первого. Во второй треугольник таким же способом вписан третий и т.д. Найдите периметр пятого треугольника.
Ответ: 3 см.
Задача 3 (решить двумя способами) Найдите знаменатель геометрической прогрессии, если ее четвертый член 25, а шестой член 16. Ответ:
Задача 4. Между числами и 27 вставьте четыре числа, чтобы получилась геометрическая прогрессия. Найдите эти числа. Ответ: ; 1; 3; 9
Задача 5. Дана геометрическая прогрессия ( ), в которой и Найти первый член геометрической прогрессии. Ответ: 12 или
Итог урока Итог урока
Домашнее задание Придумать задачу, где используется геометрическая прогрессия.Придумать задачу, где используется геометрическая прогрессия.
Спасибо за урок!!! До новых встреч!