B8B8B8B8 Математика Ф.И.________________________ Задача – 2010 ЕГЭ Презентация по материалам рабочей тетради «Задача В8» авторов И.В. Ященко, П.И. Захарова.

Презентация:



Advertisements
Похожие презентации
B8B8B8B8 Математика Чудаева Елена Владимировна, учитель математики МОУ «Инсарская СОШ 1» г. Инсар, Республика Мордовия, 2010 г. Задача – 2010 ЕГЭ Презентация.
Advertisements

B8B8B8B8 Математика Чудаева Елена Владимировна, учитель математики МОУ «Инсарская СОШ 1» г. Инсар, Республика Мордовия, 2010 г. Задача – 2010 ЕГЭ Презентация.
Производная. Подготовка к ЕГЭ, В8. Задача 1.1. На рисунке изображен график функции y = f (x), и касательная к нему в точке с абсциссой х 0. Найдите значение.
B8B8B8B8 Математика Задача – 2010 ЕГЭ Презентация по материалам рабочей тетради «Задача В 8» авторов И.В. Ященко, П.И. Захарова.
ЛАБОРАТОРНАЯ РАБОТА 1 Геометрический смысл производной.
Учитель: Матвеева Е.В.. 1. Найти производные функций.
ЛАБОРАТОРНАЯ РАБОТА 3. Определяем свойства ПРОИЗВОДНОЙ по графику ФУНКЦИИ.
Задача 8 На рисунке изображен график функции, определенной на интервале. Найдите сумму точек экстремума функции.
ЗАДАНИЯ ДЛЯ ПОДГОТОВКИ К ЕГЭ Использование графика производной для определения свойств функции.
Задание В8 1 ЕГЭ Задание В8 Тип задания: Задача на вычисление производной Характеристика задания: Задача на вычисление производной по данным, приводимым.
Решение заданий В 8 ЕГЭ по математике Артамонова Л.В., учитель математики МКОУ «Москаленский лицей»
Решение заданий В8 по материалам открытого банка задач ЕГЭ по математике 2012 года.
Геометрический смысл производной Если y = f(x) непрерывна на I, то существует f(x 0 ), где x 0 є I В точке x 0 существует касательная y = kx + b, k = f.
Производная и ее применение Работу выполнили ученики 10 класса МОУ Петровской сош.
Производная непрерывно дифференцируемой функции на промежутке убывания (возрастания) не положительна (не отрицательна). Значит необходимо выделить промежутки.
Теоретический материал. Понятие о производной функции, геометрический смысл производной Уравнение касательной к графику функции Производные суммы, разности,
Решение. Точки максимума соответствуют точкам смены знака производной с плюса на минус. На отрезке [9;6] функция имеет две точки максимума x = 4 и x =
Кузнецова О.Ф Учитель математики МБОУ СОШ 1. А С В tg A-? tg В -? 4 7 А В С Найдите градусную меру < В. 3 Найдите градусную меру < А. Работа устно. Вычислите.
Задания из ЕГЭ по теме «Производная» 10 класс. Демо B8 На рисунке изображен график функции y= f(x) и касательная к этому графику в точке с абсциссой,
Умения выполнять действия с функциями (геометрический и физический смысл производной)
Транксрипт:

B8B8B8B8 Математика Ф.И.________________________ Задача – 2010 ЕГЭ Презентация по материалам рабочей тетради «Задача В8» авторов И.В. Ященко, П.И. Захарова

Содержание (виды заданий В8) Найдите значение производной функции в точке х 0 по рисунку с изображенным графиком функции y = f(x) и касательной к нему в точке с абсциссой х 0. На рисунке изображен график функции y = f (x), касательная к этому графику, проведенная в точке х 0, проходит через начало координат. Найдите f'(х 0 ). На рисунке изображен график функции y = f (x), определенной на интервале ( a; b ). Определите количество целых точек, в которых производная функции отрицательна (положительна). На рисунке изображен график функции y = f (x), определенной на интервале (a; b). Найдите количество точек, в которых производная функции y = f (x) равна 0. На рисунке изображен график функции y = f (x), определенной на интервале (a; b). Найдите количество точек, в которых касательная к графику функции параллельна прямой у = с. На рисунке изображен график производной функции f (x), определенной на интервале (a; b). Найдите точку экстремума функции f (x). На рисунке изображен график производной функции y = f (x), определенной на интервале (x 1 ; x 2 ). Найдите количество точек максимума (минимума) функции y = f (x) на отрезке [a; b]. На рисунке изображен график производной функции f(x), определенной на интервале (x 1 ; x 2 ). Найдите промежутки возрастания (убывания) функции f(x). На рисунке изображен график производной функции f(x), определенной на интервале (x 1 ; x 2 ). Найдите абсциссу точки, в которой касательная к графику функции f(x) параллельна прямой y = kx + b или совпадает с ней

Задача 1.1. На рисунке изображен график функции y = f (x), и касательная к нему в точке с абсциссой х 0. Найдите значение производной функции y = f (x) в точке х 0. Значение производной функции f(x) в точке х 0 равно tga угловому коэффициенту касательной, проведенной к графику этой функции в данной точке. Чтобы найти угловой коэффициент, выберем две точки А и В, лежащие на касательной, абсциссы и ординаты которых целые числа. Теперь определим модуль углового коэффициента. Для этого построим ABC. Важно помнить, что тангенс острого угла прямоугольного треугольника это отношение противолежащего катета к прилежащему. Знак производной (углового коэффициента) можно определить по рисунку, например, так: если касательная «смотрит вверх» то производная положительна, если касательная «смотрит вниз» - отрицательна (если касательная горизонтальна, то производная равна нулю). Решение. АС Ответ: …… Теоретические сведения.

Задача 1.2. На рисунке изображен график функции y = f (x), и касательная к нему в точке с абсциссой х 0. Найдите значение производной функции y = f (x) в точке х 0. Решение. Ответ: ……..Ответ: …... a)б)б)

Задача 1.3. На рисунке изображен график функции y = f (x), и касательная к нему в точке с абсциссой х 0. Найдите значение производной функции y = f (x) в точке х 0. Решение. Ответ: …... a)б)б)

Задача 2.1. На рисунке изображен график функции y = f (x), касательная к этому графику, проведенная в точке 4, проходит через начало координат. Найдите f'(4). Решение. Если касательная проходит через начало координат, то можно изобразить ее на рисунке, проведя прямую через начало координат и точку касания. Ответ: …..

Задача 2.2. На рисунке изображен график функции y = f (x), касательная к этому графику, проведенная в точке х 0, проходит через начало координат. Найдите f'(х 0 ). х 0 = 2 х 0 = - 4 х 0 = Ответ: …...

Задача 3.1. На рисунке изображен график функции y = f (x), определенной на интервале (-8; 3). Определите количество целых точек, в которых производная функции отрицательна. Решим эту задачу, воспользовавшись следующим утверждением. Производная непрерывно дифференцируемой функции на промежутке убывания (возрастания) не положительна (не отрицательна). Значит необходимо выделить промежутки убывания функции и сосчитать количество целых чисел, принадлежащих этим промежуткам. Причем производная равна нулю на концах этих промежутков, значит, нужно брать только внутренние точки промежутков. Решение. Ответ: ….. Теоретические сведения.

Задача 3.2. На рисунке изображен график функции y = f (x), определенной на интервале (8; 5). Определите количество целых точек, в которых производная функции положительна. Решение. Ответ: …..

Задача 3.3. На рисунке изображен график функции y = f (x), определенной на интервале ( a;b ). Определите количество целых точек, в которых производная функции положительна. a)б)б) Решение. Ответ: …. Ответ: …...

Задача 3.4. На рисунке изображен график функции y = f (x), определенной на интервале ( a;b ). Определите количество целых точек, в которых производная функции отрицательна. a)б)б) Решение. Ответ: …. Ответ: …

Производная функции в точке х 0 равна 0 тогда и только тогда, когда касательная к графику функции, проведенная в точке с абсциссой х 0, горизонтальна. Отсюда следует простой способ решения задачи приложить линейку или край листа бумаги к рисунку сверху горизонтально и, двигая «вниз», сосчитать количество точек с горизонтальной касательной. Задача 4.1. На рисунке изображен график функции y = f (x), определенной на интервале (-6; 8). Найдите количество точек, в которых производная функции y = f (x) равна 0. Теоретические сведения. Решение. Ответ: …..

Задача 4.2. На рисунке изображен график функции y = f (x), определенной на интервале (a; b). Найдите количество точек, в которых производная функции y = f (x) равна 0. Решите устно! Ответ:

Задача 5.1. На рисунке изображен график функции y = f (x), определенной на интервале (-8; 3). Найдите количество точек, в которых касательная к графику функции параллельна прямой у = 8. Решение. Ответ: …...

Задача 5.2. На рисунке изображен график функции y = f (x), определенной на интервале (a; b). Найдите количество точек, в которых касательная к графику функции параллельна прямой у = с Решите устно! Ответ:.

Задача 6.1. На рисунке изображен график производной функции f (x), определенной на интервале (7; 5). Найдите точку экстремума функции f (x) на отрезке [-6; 4]. Решение. Ответ: ….. -3

Задача 6.2. На рисунке изображен график производной функции f (x), определенной на интервале (a; b). Найдите точку экстремума функции f (x) Ответ: ….. Ответ: …. Ответ:...

Решение. Ответ: …. Задача 7.1. На рисунке изображен график производной функции y = f (x), определенной на интервале (-3; 8). Найдите количество точек минимума функции y = f (x) на отрезке [-2; 7].

Задача 7.2. На рисунке изображен график производной функции y = f (x), определенной на интервале (x 1 ; x 2 ). Найдите количество точек максимума функции y = f (x) на отрезке [a; b]. Решение. Ответ:.... Ответ: ….. ab a b Решение. 1 2

Задача 7.3. На рисунке изображен график производной функции y = f (x), определенной на интервале (x 1 ; x 2 ). Найдите количество точек экстремума функции y = f (x) на отрезке [ -3; 10 ]. Ответ: …. 1 2

Задача 8.1. На рисунке изображен график производной функции y = f (x), определенной на интервале (-11; 3). Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них. Решение. Ответ: …...

Задача 8.2. На рисунке изображен график производной функции f(x), определенной на интервале (x 1 ; x 2 ). Найдите промежутки убывания функции f(x). В ответе укажите длину наибольшего из них. 1 Решение. Ответ: ….. Ответ: …. 2

Задача 8.3. На рисунке изображен график производной функции f(x), определенной на интервале (x 1 ; x 2 ). Найдите промежутки возрастания функции f(x). В ответе укажите длину наименьшего из них. 1 Решение. Ответ: ….. Ответ: …… 2

Задача 9.1. На рисунке изображен график производной функции f(x), определенной на интервале (-11; 3). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y = 2x -5 или совпадает с ней. Решение. Ответ: …...

Задача 9.2. На рисунке изображен график производной функции f(x), определенной на интервале (x 1 ; x 2 ). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y = -2x + 7 или совпадает с ней. 1 Решение. Ответ: ….. Решение. Ответ: …... 2

Задача 9.3. На рисунке изображен график производной функции f(x), определенной на интервале (x 1 ; x 2 ). 1 Решение. Ответ: ….. Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y = 2x +10 или совпадает с ней. Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y = -3x+8 или совпадает с ней. Решение. Ответ: ….. 2

Задача 9.4. На рисунке изображен график производной функции f(x), определенной на интервале (x 1 ; x 2 ). Найдите абсциссу точки, в которой касательная к графику функции f(x) параллельна прямой y = 7 - 4x или совпадает с ней. Решение. Ответ: …... Решение. Ответ: …

Литература Для создания шаблона презентации использовалась картинка 05/ _2.jpg 05/ _2.jpg Ященко И.В., Захаров П.И. ЕГЭ Математика. Задача В8. Рабочая тетрадь / Под.ред. А.Л. Семенова и И.В. Ященко. – М.: МЦНМО, &goods=EducationalEdition&theme=standart