Евклид или Эвклид древнегреческий мате- матик. Мировую известность приобрёл благодаря сочинению по основам математики «Начала». Биографические данные о Евклиде крайне скудны. О жизни Евклида почти ничего не известно. Некоторые биографические данные сохранились на страницах арабской рукописи XII века: " Евклид, сын Наукрата, известный под именем "Геометра", ученый старого времени, по своему происхождению грек, по местожительству сириец, родом из Тира". Он родился в Афинах, учился в Академии. В начале 3 века до н.э. переехал в Александрию и там основал математи- ческую школу и написал для ее учеников свой фундаментальный труд, объединенный под общим названием "Начала". Он был написан около 325 года до нашей эры. Евклид
В арифметике Евклид сде- лал три значительных открытия. Во-первых, он сформулировал (без доказательства) теорему о делении с остатком. Во-вторых, он придумал "алгоритм Евклида" - быстрый способ нахождения наибольшего общего делителя чисел или общей меры отрезков (если они соизмеримы). Наконец, Евклид первый начал изучать свойства простых чисел - и доказал, что их мно- жество бесконечно.
Ватиканский манускрипт, т.1, 38v 39r. Euclid I prop. 47 (теорема Пифагора). Из дошедших до нас сочине- ний Евклида наиболее знамениты «На- чала», состоящие из 15 книг. Первые четыре книги "Начал" посвя- щены геометрии на плоскости, и в них изучаются основные свойства прямоли- нейных фигур и окружностей. Книге I предпосланы определения понятий, используемых в дальнейшем. Они носят интуитивный характер, поскольку определены в терминах физической реальности: "Точка есть то, что не имеет частей". "Линия же - длина без ширины". "Прямая линия есть та, которая равно расположена по отношению точкам на ней". "Поверхность есть то, что имеет только длину и ширину" и т.д.
В книге II заложены основы так называемой геометрической алгебры, восходящей к школе Пифагора. Все величины в ней представлены геометрически, и операции над числами выполняются геометрически. Числа заменены отрезками прямой. Книга III целиком посвящена геометрии окружности, а в книге IV изучаются правильные многоугольники, вписанные в окружность, а также описанные вокруг нее. Теория пропорций, разработанная в книге V, одинаково хорошо прилагалась и к соизмеримым величинам и к несоизмеримым величинам. Эвклид включал в понятие "величины" длины, площади, объемы, веса, углы, временные интервалы и т. д. Отказавшись использовать геометрическую очевидность, но избегая также обращения к арифметике, он не приписывал величинам численных значений.
В книге VI теория пропорций книги V применяется к прямолинейным фигурам, к геометрии на плоскости и, в частности, к подобным фигурам, причем "подобные прямолинейные фигуры суть те, которые имеют углы, равные по порядку, и стороны при равных углах пропорциональные". Книги VII, VIII и IX составляют трактат по теории чисел; теория пропорций в них прилагается к числам. В книге VII определяется равенство отношений целых чисел, или, с современной точки зрения, строится теория рациональных чисел. Из многих свойств чисел, исследованных Эвклидом (четность, делимость и т.д.), приведем, например, предложение 20 книги IX, устанавливающее существование бесконечного множества "первых", т.е. простых чисел: "Первых чисел существует больше всякого предло- женного количества первых чисел". Его доказате- льство от противного до сих пор можно найти в учебниках по алгебре.
Книга X читается с трудом; она содержит классификацию квадратичных иррациональных величин, которые там представлены геометри- чески прямыми и прямоугольниками. Вот как сформулировано предложение 1 в книге X "Начал" Эвклида: "Если заданы две неравные величины и из большей вычитается часть, большая половины, а из остатка - снова часть, большая половины, и это повторяется постоян- но, то когда-нибудь остается величина, которая меньше, чем меньшая из данных величин". На современном языке: Если a и b – положи- тельные вещественные числа и a >b, то всегда существует такое натуральное число m, что mb > a. Эвклид доказал справедливость геометри- ческих преобразований.
Книга XI посвящена стереомет- рии. В книге XII, которая также восходит, вероятно, к Евдоксу, с помощью Метода исчерпывания площади криволинейных фигур сравниваются с площадями мно- гоугольников. Предметом книги XIII является построение правильных многогранников. Построение Пла- тоновых тел, которым, по-види- мому завершаются "Начала", дало основание причислить Эвклида к последователям философии Пла- тона.
Вторым после «Начал» сочинением Евк- лида обычно называют «Данные» введение в геометрический анализ. Евклиду принадлежат также «Явления», посвященные элементарной сферической астрономии, «Оптика» и «Катоп- трика», небольшой трактат «Сечения канона» (содержит десять задач о музыкальных интер- валах), сборник задач по делению площадей фигур «О делениях» (дошел до нас в арабском переводе). Изложение во всех этих сочинениях, как и в «Началах», подчинено строгой логике, причем теоремы выводятся из точно сформулирован- ных физических гипотез и математических пос- тулатов. Много произведений Евклида утеряно, об их существовании в прошлом нам известно только по ссылкам в сочинениях других авторов.