Построение графика квадратичной функции Работу выполнила учитель математики Белова В.Г МБОУ «Кшаушская » СОШ.

Презентация:



Advertisements
Похожие презентации
Квадратичная функция и ее свойства
Advertisements

График квадратичной функции Составитель Комиссарова Е.Н.
1 Построение графика квадратичной функции y = a( x-x o ) 2 +y o.
Квадратичная функция и ее свойства.. Определение. Функция вида у = ах 2 +bх+с, где а, b, c – заданные числа, а 0, х – действительная переменная, называется.
Исследование квадратичной функции Работа выполнена группой 3.
Определение Функция а, в, с - заданные числа, а=0, х -действительная переменная, называется квадратичной функцией.
Повторение. «Функции и графики».. Повторение. 1.Какие из данных графиков являются графиками каких-либо функций?
Функция вида a>0, ветви направлены вверх а < 0, ветви направлены вниз.
Графический способ решения систем уравнений. МОУТуголуковская сош Учитель Громакова О.И.
Квадратичная функция и ее свойства. Фильченко Ирина Александровна, учитель математики МОУ «Новопетровская основная общеобразовательная школа» Кулундинского.
ВЛИЯНИЕ КОЭФФИЦИЕНТОВ а, b и с НА РАСПОЛОЖЕНИЕ ГРАФИКА КВАДРАТИЧНОЙ ФУНКЦИИ.
1. Назовите координаты точек пересечения графика функции у=(х-2)(х-3) с осями координат х у.
у = x 2 Функция – квадратичная; График – парабола. Х У y = x 2 Свойства функции у = x 2 : 1. Функция – квадратичная; График – парабола.
Построение графиков функций.. Построение графика линейной функции. ху х 1 х 1 у 1 у 1 х 2 х 2 у 2 у 2 y = ах + b х – любое действительное число 1.
1 Автор: Кольцова М.Н. Новосибирск Автор: Кольцова М.Н. Новосибирск 2006.
Квадратичная функция учитель математики МОУ Золотковской СОШ Карпова Надежда Викторовна 2011г.
Квадратичная функция и ее свойства. Фильченко Ирина Александровна, учитель математики МОУ «Новопетровская основная общеобразовательная школа» Кулундинского.
Проверить знания учащихся по построению графика квадратичной функции с помощью шаблоновПроверить знания учащихся по построению графика квадратичной функции.
График квадратичной функции. y= ax 2 +bx + c a,b,c числа а 0.
Графический способ решения систем уравнений.. Линейная функция. ху х1х1 у1у1 х2х2 у2у2 y = ах + b 1.
Транксрипт:

Построение графика квадратичной функции Работу выполнила учитель математики Белова В.Г МБОУ «Кшаушская » СОШ

Y = x 2 Y = 3x 2 Y = 0,3x 2 Y = -0,5x 2 y=ax 2

Y = x 2 Y = x 2 – 4 Y = x y=ax 2 +n Как получить графики функций Y = x 2 – 4 и Y = x из графика функции Y = x 2

y=a(x-m) 2 Y = x 2 Y = ( x – 6 ) 2 Y = (x + 3) 2

y=a(x-m) 2 + n Y = (x - 6) Как получить график функции y=a(x-m) 2 + n из графика функции y=ax 2

Найдите соответствия:

Параболу y = 5x 2 cдвинули на 3 единицы вниз и на 6 единиц вправо. Графиком какой функции является полученная парабола? Составьте уравнение параболы Параболу y = -2x 2 cдвинули на 7 единицы вверх и на 4 единицы влево. Графиком какой функции является полученная парабола? Y =5(x - 6) Y = -2(x + 4) 2 + 7

Построение графика функции у = ах 2 + bх +с. 1. Определить направление ветвей параболы.

Построение графика функции у = ах 2 + bх +с. 2. Найти координаты вершины параболы (т; п). 3. Провести ось симметрии. О (т;п)

Построение графика функции у = ах 2 + bх +с. 4. Определить точки пересечения графика функции с осью О х, т.е. найти нули функции. (х 1 ;0)(х 2 ;0)

Построение графика функции у = ах 2 + bх +с. 5. Составить таблицу значений функции с учетом оси симметрии параболы. х х1х1 х2х2 х3х3 х4х4 уу1у1 у2у2 у3у3 у4у4

Алгоритм построения графика функции у = ах 2 + bх +с. 1. Определить направление ветвей параболы. 2. Найти координаты вершины параболы (x в ; y в ). 3. Провести ось симметрии. 4. Определить точки пересечения графика функции с осью О х, т.е. найти нули функции. 5. Составить таблицу значений функции с учетом оси симметрии параболы.

Постройте график функции y = x 2 – 2x - 3. С помощью графика найдите: 1.Область определения функции; 2.Область значений функции; 3.Нули функции; 4.Промежутки, в которых у>0, y

y = -x 2 - 4x - 5

y = x 2 – 2x - 3.