Теорема Пифагора Подготовила ученица 9Б класса Гаджиева Хураман
Теорема Пифагора Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника.
В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов. Формулировки 90 o c a b c a b a 2 + b 2 = c 2
Для всякой тройки положительных чисел a, b и c, такой, что a 2 + b 2 = c 2, существует прямоугольный треугольник с катетами a и b, и гипотенузой c. Обратная теорема Пифагора: Доказательства: На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии.
Доказательство через равнодополняемость: 1.Расположим четыре равных прямоугольных треугольника так, как показано на рисунке. 2.Четырёхугольник со сторонами c является квадратом, так как сумма двух острых углов 90°, а развёрнутый угол 180°. 3.Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a + b), а с другой стороны, сумме площадей четырёх треугольников и площади внутреннего квадрата. (a+b) 2 =4* ½ ab + c 2 a 2 + 2ab + b 2 = 2ab + с 2 a 2 + b 2 = c 2 (ч.т.д.) с b a a b с 2 2 2
Пифагоровы штаны шуточное название одного из доказательств теоремы Пифагора.
Египетский треугольник прямоугольный треугольник с соотношением сторон 3:4:5. Особенностью такого треугольника, известной ещё со времён античности, является то, что при таком отношении сторон теорема Пифагора даёт целые квадраты как катетов, так и гипотенузы, то есть 9 : 16 : 25.