Замечательная точка треугольника Точка пересечения медиан треугольника. Работа ученика 8 класса Султангалина Ромы 2009г.
Из истории замечательных точек треугольника В четвертой книге «Начал» Евклид решает задачу «Вписать круг в данный треугольник». Из решения вытекает, что три биссектрисы внутренних углов треугольника пересекаются в одной точке – центре вписанного круга. Из решения другой задачи Евклида вытекает, что перпендикуляры, восстановленные к сторонам треугольника в их серединах, тоже пересекаются в одной точке – центре описанного круга. В «Началах» не говорится о том, что и три высоты треугольника пересекаются в одной точке, называемой ортоцентром (греческое слово «ортос» означает прямой, правильный). Это предложение было, однако, известно Архимеду, Паппу, Проклу. Четвертой особенной точкой треугольника является точка пересечения медиан. Архимед доказал, что она является центром тяжести (барицентром) треугольника. На вышеназванные четыре точки было обращено особое внимание, начиная с XVIII в. они были названы «замечательными» или «особенными точками треугольника». Исследование свойств треугольника, связанных с этими и другими точками, послужило началом для создания новой ветви элементарной математики – «геометрии треугольника», или «новой геометрии треугольника», одним из родоначальников которой был Леонард Эйлер.
Медиана Отрезок, соединяющий вершину треугольника с некоторой точкой на противоположной стороне, называется чевианой. А если чевианы связывают вершину треугольника с серединами противоположных сторон, то их называют медианами. Точка пересечения медиан является его центром масс или центром тяжести треугольника, или барицентром. А в с А1 С1 В1 o
Теорема медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины.
Доказательство Рассмотрим произвольный треугольник АВС. Обозначим буквой О точку пересечения его медиан АА1 и ВВ1 и проведем среднюю линию А1В1 этого треугольника. А В С А1 В1 О Отрезок А1В1 параллелен стороне АВ, поэтому углы 1 и 2, а также углы 3 и 4 равны как накрест лежащие углы при пересечении параллельных прямых АВ и А1В1 секущими АА1 и ВВ1. Следовательно, треугольники АОВ и А1ОВ1 подобны по двум углам, и, значит, их стороны пропорциональны Но АВ=2А1В1, поэтому АО=2А1О и ВО=2 В1О. таким образом, точка О пересечения медиан АА1 и ВВ1 делит каждую из них в отношении 2:1, считая от вершины. Аналогично доказывается, что точка пересечения медиан ВВ1 и СС1 делит каждую из них в отношении 2:1, считая от вершины, и, следовательно, совпадает с точкой О.