История возникновения тригонометрии до XVI века. Учебный проект выполнили ученицы 10«А» класса МОУ СОШ 27 Русскова Таня и Дорофеева Оксана Руководитель:

Презентация:



Advertisements
Похожие презентации
История возникновения тригонометрии до XVI века..
Advertisements

Происхождение слов синус,косинус, тангенс
Тригонометрические функции, их свойства, графики и применение Подготовила: Ученица 10«А»класса Биалиева Светлана Руководитель:Кретова Д.Н.
Соотношения между сторонами и углами треугольника Синус, косинус и тангенс острого угла прямоугольного треугольника Выполнил: Кузнецов Платон 8/2.
Тригонометрические функции. Историческая справка. Подготовил: Ученик 10 класса Резников Алексей.
Г. Сыктывкар 2011 год Учитель математики Яна Валерьевна Елфимова X Y - X Y
Выполнил: Кузнецов Платон 8/2. Синус Косинус Тангенс.
История тригонометрии Греция Индия Аравия Европа Презентацию подготовил: Ысманалы уулу Атабек.
Слово « тригонометрия » впервые встречается в заглавии книги немецкого теолога и математика Питикуса. Что такое тригонометрия? Тригонометрия – математическая.
Возникновение тригонометрии Алгебра и начала анализа. 10 класс.
История тригонометрии Греция Индия Аравия Россия Европа Презентацию составила ученица 11 Б класса МОУ «Лицей 43» Елена Бурова.
Тригонометрия. Происхождение слова тригонометрия Тригонометрия (от греч. τρίγονο trigōnos (треугольник) и греч. μετρειν metreō (измерять), то есть измерение.
Тригонометрия – слово греческое Metrew - измеряю Trigwnon – треугольник Тригонометрия в буквальном переводе означает – измерение треугольников Возникновение.
История тригонометрии выполнили: ученицы 10 В класса Жданова Людмила Бабичева Роксана учитель: Мартюшова Валентина Алексеевна.
И СТОРИЯ ТРИГОНОМЕТРИИ Куляев Владимир 10 «Б». С ОДЕРЖАНИЕ Определения История Синус, косинус, тангенс Дальнейшее развитие Аналитическая теория Список.
История тригонометрии ТАНГЕНС Злобина Карина Головина Люда 10 *Б*
Историческая справка Тригонометрия. Тригонометрия (от греч. τρίγονο (треугольник) и греч. μετρειν (измерять), то есть измерение треугольников) раздел.
Тригонометрия раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Данный термин впервые появился в 1595 г.
Что означает название предмета «Алгебра и начала анализа?» Алгебра – один из разделов математики, изучающий свойства величин, выраженных буквами, независимо.
История создания синуса косинуса и тангенса. Работа учеников 8 класса А Грибова Даниила и Никитиной Кристины.
Транксрипт:

История возникновения тригонометрии до XVI века. Учебный проект выполнили ученицы 10«А» класса МОУ СОШ 27 Русскова Таня и Дорофеева Оксана Руководитель: Айвазян Д.Ф.

Мы надеемся узнать об истории тригонометрии какие-то неизвестные нам факты. Мы думаем что проект поможет исследовать что-то новое и неизведанное нами.

История тригонометрии

Тригонометрия (от греч. trigonon-треугольник и metrio-измеряю) – раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Возникла и развивалась в древности как один из разделов астрономии, как ее вычислительный аппарат, отвечающий практическим нуждам человека. С ее помощью можно определить расстояние до недоступных предметов и, вообще, существенно упрощать процесс геодезической съемки местности для составления географических карт. Общепринятые понятия тригонометрии, а также обозначения и определения тригонометрических функция сформировались в процессе долгого исторического развития. Тригонометрия (от греч. trigonon-треугольник и metrio-измеряю) – раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Возникла и развивалась в древности как один из разделов астрономии, как ее вычислительный аппарат, отвечающий практическим нуждам человека. С ее помощью можно определить расстояние до недоступных предметов и, вообще, существенно упрощать процесс геодезической съемки местности для составления географических карт. Общепринятые понятия тригонометрии, а также обозначения и определения тригонометрических функция сформировались в процессе долгого исторического развития. Тригонометрические сведения были известны древним вопросы из тригонометрии, связанные с астрономией. Однако они рассматривали не линии синуса, косинуса и др., а хорды. Роль линии синусов угла a у них выполняла хорда, стягивающая дугу, равную 2a. Тригонометрические сведения были известны древним вавилонянам и египтянам, но основы этой науки заложены в Древней Греции встречающиеся уже в III веке до н.э. в работах великих математиков– Евклида, Архимеда, Апполония Пергского.. Древнегреческие астрономы успешно решали отдельные вопросы из тригонометрии, связанные с астрономией. Однако они рассматривали не линии синуса, косинуса и др., а хорды. Роль линии синусов угла a у них выполняла хорда, стягивающая дугу, равную 2a.

В IV-V веках появился уже специальный термин в трудах по астрономии великого индийского учёного Ариабхаты. Отрезок CB он назвал ардхаджива (ардха –половина, джива – тетива лука, которую напоминает хорда). Позднее появилось более краткое название джива. Арабскими математиками в IX веке это слово было заменено на арабское слово джайб (выпуклость). При переводе арабских математических текстов в веке оно было заменено латинским синус (sinus –изгиб, кривизна). Известный Мухаммед ибн Муса ал-Хорезми (IX в.) составил таблицы синусов и котангенсов. Ал-Хабаш вычислил таблицы для тангенса, котангенса и косеканса. Слово косинус намного моложе. Косинус – это сокращение латинского выражения completely sinus, т. е. дополнительный синус (или иначе синус дополнительной дуги).

Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (линия тангенсов – касательная к единичной окружности). Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс) введен в X веке Аль - Батани ( ) и Абу-ль-Вефа Мухамед-бен Мухаммед ( ), который составил таблицы синусов и тангенсов через 10 с точностью до 1/604. Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (линия тангенсов – касательная к единичной окружности). Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс) введен в X веке Аль - Батани ( ) и Абу-ль-Вефа Мухамед-бен Мухаммед ( ), который составил таблицы синусов и тангенсов через 10 с точностью до 1/604. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты лишь в XIV веке немецким математиком, астрономом Региомонтаном (1467 г.). Именно он доказал теорему тангенсов (латинизированное имя немецкого астронома и математика Иоганна Мюллера ( ). Региомонтан составил также подробные тригонометрические таблицы; благодаря его трудам плоская и сферическая тригонометрия стала самостоятельной дисциплиной и в Европе. Региомонтан – самый видный европейский представитель этой эпохи в области тригонометрии. Его обширные таблицы синусов через 1 с точностью до 7-й значащей цифры и его мастерски изложенный тригонометрический труд «пять книг о треугольниках всех видов» имели большое значение для дальнейшего развития тригонометрии в XVI – XVII веках. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты лишь в XIV веке немецким математиком, астрономом Региомонтаном (1467 г.). Именно он доказал теорему тангенсов (латинизированное имя немецкого астронома и математика Иоганна Мюллера ( ). Региомонтан составил также подробные тригонометрические таблицы; благодаря его трудам плоская и сферическая тригонометрия стала самостоятельной дисциплиной и в Европе. Региомонтан – самый видный европейский представитель этой эпохи в области тригонометрии. Его обширные таблицы синусов через 1 с точностью до 7-й значащей цифры и его мастерски изложенный тригонометрический труд «пять книг о треугольниках всех видов» имели большое значение для дальнейшего развития тригонометрии в XVI – XVII веках.

Тригонометрия: 1) плоская - изучает только плоские треугольники 2) сферическая – изучает только сферические треугольники 3) прямолинейная – не входит в школьную программу. Плоская тригонометрия начала развиваться позже сферической, хотя отдельные теоремы ее встречались и раньше, так например 12-я и 13-я теоремы второй книги «Начал» Евклида (III в. до н. э.) выражают по существу теорему косинусов. Плоская тригонометрия получила развитие у аль-Баттани (2-я половина IX – начало Xв.), Абу-ль-Вефа, Бхскала и Насиреддина Туси, которым была уже известна теорема синусов. Тригонометрия, занимающаяся сферическими треугольниками, называется сферической, также она рассматривает соотношения между сторонами и углами треугольников на сфере, образованных дугами больших кругов. В работах математика Франсуа Виета ( ), который полностью решил задачу об определениях всех элементов плоского или сферического треугольника по трем данным.

Исторические сведения о развитии тригонометрии.

Наивысшими достижениями греческая тригонометрия обязана астроному Птолемею (2 век н. э.), создателю геоцентрической системы мира, господствовавшей до Коперника. Греческие астрономы не знали синусов, косинусов и тангенсов. Вместо таблиц этих величин они употребляли таблицы : позволяющие отыскать хорду окружности по стягиваемой дуге. Дуги измерялись в градусах и минутах ; хорды тоже измерялись градусами ( один градус составлял шестидесятую часть Радиуса ), минутами и секундами. Это шестидесятеричное подразделение греки заимствовали у вавилонян. В первом тысячелетии нашей эры происходит бурный расцвет культуры и науки в странах Арабского Халифата, и поэтому основные открытия тригонометрии принадлежат ученым этих стран. Туркменский ученый аль - Маразви первым ввел понятие tg и ctg как отношение сторон прямоугольного треугольника и составил таблицы sin, tg, и ctg. Основным достижением арабских ученых является то, что они отделили тригонометрию от астрономии.

Значительные высоты достигла тригонометрия и у индийских средневековых астрономов. Главным достижением индийских астрономов стала замена хорд синусами, что позволило вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом, в Индии было положено начало тригонометрии как учению о тригонометрических величинах. Индийские ученые пользовались различными тригонометрическими соотношениями, в том числе и теми, которые в современной форме выражается как : sin a + cos a = 1, sin a = cos (90 - a) sin (a + b) = sin a. cos B + cos a. sin b

Тригонометрия необходима для астрономических расчетов которые оформляются в виде таблиц. Первая таблица синусов имеется в « Сурья - сиддханте » и у Ариабхаты. Она приведена через Позднее ученые составили более подробные таблицы : например Бхаскара приводит таблицу синусов через 1. В 8 в ученые стран Ближнего и Среднего Востока познакомились с трудами индийских математиков и астрономов и перевели их на арабский язык. В середине 9 века среднеазиатский ученый аль - Хорезми написал сочинение « Об индийском счете ». После того как арабские трактаты были переведены на латынь, многие идеи индийских математиков стали достоянием европейской, а затем и мировой науки. Такою она была еще в средние века, хотя иногда в ней использовались и аналитические методы, особенно после появления логарифмов. Постепенно тригонометрия органически вошла в математический анализ, механику, физику и технические дисциплины.

Мы узнали много исторических фактов о которых мы не знали до этого проекта. Теперь мы понимаем насколько важна тригонометрия и тригонометрические функции в нашей школьной жизни. P.S. Спасибо, Динара Фанзильевна, за то что вы нам дали эту тему для проекта !