Курс лекций по теоретической механике Динамика (II часть) Бондаренко А.Н. Москва - 2007 Электронный учебный курс написан на основе лекций, читавшихся автором.

Презентация:



Advertisements
Похожие презентации
Курс лекций по теоретической механике Динамика (I часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Advertisements

Курс лекций по теоретической механике Динамика (II часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Курс лекций по теоретической механике Статика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для студентов,
Курс лекций по теоретической механике Статика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для студентов,
Курс лекций по теоретической механике Кинематика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для.
Курс лекций по теоретической механике Статика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для студентов,
Курс лекций по теоретической механике Динамика (II часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Курс лекций по теоретической механике Динамика (I часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Курс лекций по теоретической механике Кинематика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для.
Курс лекций по теоретической механике Кинематика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для.
Курс лекций по теоретической механике Статика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для студентов,
Курс лекций по теоретической механике Динамика (I часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Курс лекций по теоретической механике Динамика (I часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Курс лекций по теоретической механике Динамика (II часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Курс лекций по теоретической механике Кинематика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для.
Курс лекций по теоретической механике Кинематика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для.
Курс лекций по теоретической механике Динамика (I часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Курс лекций по теоретической механике Кинематика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для.
Курс лекций по теоретической механике Статика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для студентов,
Курс лекций по теоретической механике Динамика (I часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Транксрипт:

Курс лекций по теоретической механике Динамика (II часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для студентов, обучавшихся по специальностям СЖД, ПГС и СДМ в НИИЖТе и МИИТе ( гг.). Учебный материал соответствует календарным планам в объеме трех семестров. Для полной реализации анимационных эффектов при презентации необходимо использовать средство просмотра Power Point не ниже, чем встроенный в Microsoft Office операционной системы Windows-ХР Professional. Запуск презентации – F5, навигация – Enter, навигационные клавиши, щелчок мыши, кнопки. Завершение – Esc. Замечания и предложения можно послать по Московский государственный университет путей сообщения (МИИТ) Кафедра теоретической механики Научно-технический центр транспортных технологий

Лекция 9. Работа, мощность силы. Кинетическая энергия. Теоремы об изменении кинетической энергии для материальной точки и системы. Пример решения задач на использование теоремы об изменении кинетической энергии материальной точки. Лекция 9.

Лекция 9 Работа, мощность силы. Кинетическая и потенциальная энергия – механическое движение в результате взаимодействия механических систем может переноситься с одной механической системы на другую: 1. без превращений в другую форму движения, т.е. в качестве того же механического движения, 2. с превращением в другую форму движения материи (потенциальную энергию, теплоту, электрическую энергию и т.д.) Каждый из этих случаев имеет свои измерители (меры) механического движения и механического взаимодействия, отстаиваемые в свое время Декартом и Лейбницем (см. таблицу): Мера механического движенияМера механического взаимодействия ДекартКоличество движенияИмпульс силы ЛейбницКинетическая энергияРабота силы Ф. Энгельс показал существование и равноправность обоих (векторных и скалярных) мер движения, каждой из которых соответствуют свои меры механического взаимодействия. Импульс силы является мерой действия силы при изменении механического движения. Работа является количественной мерой превращения механического движения в какую-либо другую форму движения материи. Работа силы, приложенной к материальной точке – Пусть точка приложения переменной по величине и направлению силы перемещается по некоторой произвольной траектории. На малом (элементарном) перемещении силу можно считать постоянной и элементарная работа силы равна проекции силы на направление перемещения (касательную к траектории движения), умноженной на элементарное перемещение : M T Знак элементарной работы определяется величиной угла и знаком cos : Поскольку часто более удобно работать с острыми углами, то в этом случае используют острый угол и знак присваивают по следующему простому правилу: если сила и перемещение совпадают по направлению, то присваивается знак +, если противоположны по направлению, то знак. Элементарная работа может быть записана в виде скалярного произведения: и в проекциях: Работа на конечном перемещении M M 1 получается суммированием или интегрированием: Частные случаи: 1. Сила постоянная по величине (F = const) и направлению ( =const): 2. Сила постоянная по величине (F = const) и параллельна перемещению ( =0): 3. Сила перпендикулярна перемещению: 1

Лекция 9 ( продолжение – 9.2 ) Можно доказать следующие теоремы и утверждения: Работа равнодействующей на некотором перемещении равна алгебраической сумме работ составляющих сил на том же перемещении: Работа постоянной сил по величине и направлению на составном перемещении равна алгебраической сумме работ этой силы на каждом из составляющих перемещений: Работа внутренних сил неизменяемой системы равна нулю: Работа силы тяжести не зависит от вида траектории и равна произведению силы тяжести на разность высот: Работа силы, приложенной к твердому телу, вращающемуся вокруг неподвижной оси. Запишем выражение для элементарной работы силы, приложенной к точке, и выразим элементарное перемещение через угол поворота тела: ω R d dsds T h h z -работа силы, приложенной к вращающемуся твердому телу, выражается через момент силы относительно оси. В частном случае постоянного значения момента силы относительно оси работа равна произведению момента силы на угол поворота: Работа силы, приложенной к вращающемуся твердому телу, для конечного угла поворота: Мощность – величина, характеризуемая количеством работы, произведенной в единицу времени: Мощность силы, приложенной к точке: Мощность силы, приложенной к вращающемуся твердому телу: Работа линейной силы упругости (реакции пружины) при перемещении из состояния равновесия: 2

Лекция 9 ( продолжение – 9.3 ) Кинетическая энергия – характеризует способность механического движения превращаться в эквивалентное количество другого движения: Кинетическая энергия материальной точки: Кинетическая энергия системы материальных точек: Кинетическая энергия твердого тела при поступательном движении: Кинетическая энергия твердого тела при вращательном движении: Кинетическая энергия твердого тела при плоском движении: Теорема об изменении кинетической энергии материальной точки – Изменение кинетической энергии точки равно работе сил, действующих на точку на том же перемещении: Запишем основной закон динамики точки: Выразим ускорение через скорость и умножим левую и правую части соотношения скалярно на дифференциал радиуса-вектора : Проинтегрируем полученное соотношение: После подстановки пределов получаем: Теорема об изменении кинетической энергии системы – Изменение кинетической энергии системы равно работе сил, действующих на систему на соответствующих перемещениях точек системы: Запишем теорему об изменении кинетической энергии для произвольной точки системы, при этом выделим работу внешних и внутренних сил, приложенных к данной точке: Просуммируем левые и правые части соотношений: В левой части получили разность кинетических энергий системы: Для неизменяемой системы: 3

Лекция 9 ( продолжение – 9.4 ) Пример решения задачи на применение теоремы об изменении кинетической энергии для материальной точки – Снаряд массы m выбрасывается пружинным устройством из канала под углом к горизонту. Длина нерастянутой пружины жесткостью c равна длине канала l 0. Перед выстрелом пружина сжимается на величину d. Определить скорость снаряда при вылете из канала, а также максимальную высоту полета. Дано:, c, d, m, l 0 Найти: v 1, H d 1. Выбираем объект - снаряд 2. Отбрасываем связи – ствол, пружину 3. Заменяем связи реакциями – N, R 4. Добавляем активные силы – G 5. Записываем теорему об изменении кинетической энергии для точки: Начальная скорость снаряда равна нулю: Работа сил, приложенных к объекту, равна: Работа нормальной реакции равна нулю (направление реакции перпендикулярно перемещению): Работа силы тяжести: Работа упругой реакции пружины (направление реакции совпадает с перемещением): Подставляем определенные величины в теорему: Отсюда величина скорости вылета снаряда: Определяем максимальную высоту полета (повторяем шаги 1-5): H Вертикальная скорость снаряда в наивысшей точке траектории равна нулю : Горизонтальная скорость снаряда постоянная (из закона сохранения проекции на ось x количества движения точки) и равна: Работа силы тяжести: Подставляем определенные величины в теорему: После некоторых сокращений и преобразований: Отсюда максимальная высота полета: Заметим, что предыдущее выражение можно более быстро получить, записывая теорему об изменении кинетической энергии только для вертикальной скорости движения точки, поскольку горизонтальные силы отсутствуют и горизонтальная скорость не изменяется.. 4