Подготовила Шушканова Елизавета, Ученица 9 класса МОУ СОШ 26 Руководитель: Старцева Татьяна Александровна.

Презентация:



Advertisements
Похожие презентации
В ГЕОМЕТРИИ. «Природа сыграла злую шутку с математиками. Учёным XIX века, возможно, не хватало воображения, зато у природы его было достаточно. Те патологические.
Advertisements

Презентацию подготовила Ученица 10 А класса Колантаевская Анна.
Фракталы Презентацию подготовила ученица 9 «А» класса Синявцева Дарья.
Красота Фракталов. Что такое фрактал? Фрактал (лат. fractus дробленый) термин, означающий геометрическую фигуру, обладающую свойством самоподобия, то.
Построение геометрических фракталов методом рекурсии.
ФРАКТАЛЫ Путешествие в мир фракталов. Математика, если на нее правильно посмотреть, отражает не только истину, но и несравненную красоту. Математика,
"Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому –Benua Mandelbrot. Выполнили: Березовский Никита – Михайлов.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ МОРДОВИЯ МОУ «ИНСАРСКАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА 1» Конкурс научно – исследовательских работ «Интеллектуальное будущее.
ФРАКТАЛЫ Путешествие в мир фракталов. Математика, если на нее правильно посмотреть, отражает не только истину, но и несравненную красоту. Математика,
Путешествие в мир фракталов. Математика, если на нее правильно посмотреть, отражает не только истину, но и несравненную красоту.
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»
ФРАКТАЛЫ И ФРАКТАЛЬНАЯ ГРАФИКА Мастер п / о « Оператор ЭВМ »: Тасмухамбетова Гульзат Жалгаспаевна Ясный 2010/11 учебный год ГОУ НПО Профессиональный лицей.
Фракталы Многие природные объекты и явления имеют не гладкий, а изломанный характер. Среди них листья деревьев, береговая линия, молния и др. Для описания.
«Красота фракталов» ГОУ ДОД Интеллект Паньгина Н.Н., директор МОУДОД «Центр информационных технологий» г. Сосновый Бор Июль 2008.
Бенуа Мандельброт ( фр. Benoît Mandelbrot ; род. 20 ноября 1924, Варшава ) французский математик. Лауреат премии Вольфа по физике (1993). Бенуа М a ндельброт.
Г. Борисоглебск 2011 год Выполнила: ученица 9 класса «А» Солнышкина Ирина Юрьевна Руководитель: учитель математики Крюченкова Вера Михайловна Муниципальное.
Разветвления трубочек трахей, листья на деревьях, вены в руке, река, бурлящая и изгибающаяся, рынок ценных бумаг это все фракталы. Однако фракталы не.
Романова Е.В. МОУ гимназия 33 города Костромы. Кто хотя бы раз видел фракталы – удивительно красивые и таинственные геометрические объекты, тот надолго.
Исследовательский проект: «Фракталы.» Выполнила ученица 9 класса: Ушакова Ирина Руководитель учитель математики: Черенкова Жанна Юрьевна «МОУ лицей 1»
Числовые множества 4. Какие виды чисел использует современная математика Ознакомившись с материалом данной презентации, вы узнаете: 1. Что такое аксиома,
Транксрипт:

Подготовила Шушканова Елизавета, Ученица 9 класса МОУ СОШ 26 Руководитель: Старцева Татьяна Александровна

Математика, если на нее правильно посмотреть, отражает не только истину, но и несравненную красоту. Бертранд Рассел.

Фракталы являются такими объектами: с одной стороны сложные, с другой стороны построенные по очень простым законам. Благодаря этому свойству, фракталы обнаруживают много общего со многими природными объектами. Но фрактал выгодно отличается от природного объекта тем, что фрактал имеет строгое математическое определение и поддаётся строгому описанию и анализу. Поэтому теория фракталов позволяет предсказать скорость роста корневых систем растений, трудозатраты на осушение болот, зависимость массы соломы от высоты побегов и многое другое.

1.Доказать на примере фракталов, что математика является развивающейся наукой. 2.Показать на примере фракталов взаимодействие математики с другими науками. 3.Создать свой собственный фрактал.

1.Изучить фракталы и их свойства. 2.Понять принцип построения фракталов. 3.Рассмотреть применение фракталов в других науках.

Применение фракталов обширно: они применяются в кибернетике, программировании, математике, физике, дизайне, изобразительном искусстве. Также встречаются в биологии, литературе, географии.

Большая часть моих трудов это муки рождения новой научной дисциплины. Бенуа Мандельброт Вплоть до 20 века шло накопление данных о таких странных объектах, без какой либо попытки их систематизировать. Так было, пока за них не взялся Бенуа Мандельброт - отец современной фрактальной геометрии и слова фрактал. Работая в IBM математическим аналитиком, он изучал шумы в электронных схемах, которые невозможно было описать с помощью статистики. Постепенно сопоставив факты, он пришел к открытию нового направления в математике - фрактальной геометрии.

Бенуа́ Мандельбро́т французский и американский математик, создатель фрактальной геометрии. Лауреат премии Вольфа по физике. Бенуа Мандельброт родился в Варшаве в 1924 году в семье литовских евреев. Он работал в области лингвистики, теории игр, экономики, аэронавтики, географии, физиологии, астрономии, физики. Ему нравилось переключаться с одной темы на другую, изучать различные направления. Понятие «фрактал» придумал Бенуа Мандельброт во время изучения статистики цен на хлопок. Колебания цен в течение дня казались случайными, но Мандельброт смог выяснить тенденцию их изменения. Он проследил симметрию в длительных колебаниях цены и колебаниях кратковременных. Это открытие оказалось неожиданностью для экономистов. Умер 14 октября 2010 года в Кембридже (Массачусетс, США), в возрасте 85 лет, по сообщению жены, от рака поджелудочной железы.

Фрактал (лат. fractus дробленый, сломанный, разбитый) сложная геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком. В более широком смысле под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, строго большую топологической. Следует отметить, что слово «фрактал» не является математическим термином и не имеет общепринятого строгого математического определения.

Почему же фракталы так красивы? Так сказочно, обворожительно, волнующе красивы. Математика вся пронизана красотой и гармонией, только эту красоту надо увидеть. Вот как пишет сам Мандельброт в своей книге "The Fractal Geometry of Nature»: "Почему геометрию часто называют холодной и сухой? Одна из причин лежит в ее неспособности описать форму облаков, гор или деревьев. Облака - это не сферы, горы - не углы, линия побережья - не окружность, кора не гладкая, а молния не прямая линия..."

Если люди отказываются верить в простоту математики, то это только потому, что они не понимают всю сложность жизни. Джон фон Нейман К рукотворным относятся те фракталы, которые были придуманы учёными, они при любом масштабе обладают фрактальными свойствами. На природные фракталы накладывается ограничение на область существования то есть максимальный и минимальный размер, при которых у объекта наблюдаются фрактальные свойства. Детерминированные (алгебраические и геометрические) и недетерминированные (стохастические). Фракталы делятся на геометрические, алгебраические и стохастические.

Именно с них и начиналась история фракталов. Этот тип фракталов получается путем простых геометрических построений. Обычно при построении этих фракталов поступают так: берется "затравка" - аксиома - набор отрезков, на основании которых будет строиться фрактал. Далее к этой "затравке" применяют набор правил, который преобразует ее в какую-либо геометрическую фигуру. Далее к каждой части этой фигуры применяют опять тот же набор правил. С каждым шагом фигура будет становиться все сложнее и сложнее, и если мы проведем бесконечное количество преобразований - получим геометрический фрактал

Математика наиболее совершенный способ водить самого себя за нос. Альберт Эйнштейн. Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря.

О фракталах говорят много. В интернете созданы сотни сайтов, посвящённых фракталам. Но большая часть информации сводится к тому, что фракталы это красиво. Загадочность фракталов объясняют их дробной размерностью, но мало кто понимает, что, же такое дробная размерность.

Сперва небольшое введение, чтобы привести наши бытовые представления об измерении тел в некоторый порядок. Не стремясь к математической точности формулировок, давайте разберёмся, что же такое размер, мера и размерность.

Размер объекта можно померить линейкой. В большинстве случаев размер получается малоинформативен. Какая куча крупы больше? Если сравнивать высоты, то больше красная, если ширины зелёная. Сравнение размеров может быть информативным если предметы подобны друг другу: Теперь какие бы размеры мы ни сравнили: ширину, высоту, сторону, периметр, радиус вписанной окружности или любые другие, всегда получится, что зелёная куча больше. Далее мы будем говорить о подобных объектах, поэтому «размер» нам пригодится.

Мера тоже служит для измерения объектов, но она измеряется не линейкой. О том, как именно она измеряется мы ещё поговорим, а пока отметим её главное свойство мера аддитивна. Выражаясь на бытовом языке, при слиянии двух объектов, мера суммы объектов равна сумме мер исходных объектов. Для одномерных объектов мера пропорциональна размеру. Если вы возьмёте отрезки длиной 1см и 3см, «сложите» их, то «суммарный» отрезок будет иметь длину 4см (1+3). Для не одномерных тел, мера вычисляется по некоторым правилам, которые подбираются так, чтобы мера сохраняла аддитивность. Например, если вы возьмёте квадраты со сторонами 3см и 4см и «сложите» их, то сложатся площади (9+16=25), то есть сторона (размер) результата будет 5см. И слагаемые, и сумма являются квадратами, то есть подобны друг другу и мы можем сравнивать размеры. Оказывается, что размер суммы не равен сумме размеров.

Давайте обозначим размерность D, меру M, размер L. Тогда формула, связывающая эти три величины будет имеют вид: M = L D Для привычных на мер эта формула приобретает всем знакомые обличия. Для двухмерных тел (D=2) мерой (M) является площадь (S), для трёхмерных тел (D=3) объём (V): S = L 2, V = L 3

Когда говорят о хаосе, всегда вспоминают простые слова «Взмах крыла бабочки по одну сторону Атлантики приводит к урагану по другую». Понятие фрактал неразрывно связано с понятием хаос. При фрактальном подходе хаос перестает быть синимом беспорядка и обретает тонкую структуру. Но, в общем, Хаос - это отсутствие предсказуемости. Хаос возникает в динамических системах, когда для двух очень близких начальных значений система ведет себя совершенно по- разному. Пример хаотичной динамической системы – погода.

Исследуя фракталы, мы приходим к выводу, что математика развивается и активно взаимодействует с другими науками. Другие науки также оказывают влияние на математику. Мой фрактал Итак, из определения стохастических фракталов следует, что моя гипотеза доказана: все создаваемые нами графические объекты (буквы, цифры, иероглифы, геометрические фигуры, рисунки) являются фракталами, которые можно задать уравнениями, пусть даже и очень сложными. Таким образом, решена одна из целей моей работы – создание фрактала. Фракталы – ещё не до конца изученная область математики, но необходимо стремиться ее изучить.