Подготовила Ученица 8 класса «Б» Шебанкова Марина.

Презентация:



Advertisements
Похожие презентации
Проект по теме: Теорема Чевы Проект по теме: Теорема Чевы Автор: Автор: ученица 9 Б ученица 9 Б МОУ СОШ 7 МОУ СОШ 7 Струпан Ольга. Струпан Ольга.
Advertisements

Выполнила: Строгонова И., ученица МОУСОШ1 11В класса Руководитель: Жданова О.А. Г.Лиски 2009год.
Некоторые именные теоремы о треугольниках Борд Лиза 10 М Учитель : Муравьёва Анна Петровна.
m n ТЕОРЕМА МЕНЕЛАЯ названа по имени древнегреческого учёного Менелая (I в.), доказавшего её для сферического треугольника Пусть М; Р; К – три точки,
Теоремы Чевы и Менелая. Учитель математики МБОУ сош28 г.Балаково Покатилова Н.А.
Багдаринская средняя общеобразовательная школа Тема: «Замечательные теоремы планиметрии» Выполнила: ученица 10-б класса Матафонова Альбина Проверила: учитель.
Презентация к уроку Геометрия 10 класс Теоремы Чевы и Менелая Учитель математики МБОУ лицей 90 Корнилова Т. Ю. 2010г.
Теорема Чевы. Замечательные точки треугольника. Семенова Анастасия 8 « Б »
Если на сторонах АВ, ВС и СА треуголь- ника АВС взяты соответственно точки С 1, А 1 и В 1, то отрезки АА 1,ВВ 1 и СС 1 пе- ресекаются в одной точке тогда.
Биссектрисы треугольника
Теорема Менелая Пусть на сторонах AB, BC и продолжении стороны AC треугольника ABC взяты соответственно точки C 1, A 1 и B 1. Точки A 1, B 1, C 1 лежат.
Напомним… Теорема. Доказательство. Проведем прямые СЕ и BF, параллельные прямой AD (E – точка на стороне АВ). Согласно обобщению теоремы Фалеса BС = CD.
Ученицы 11 класса Средней школы 2 Еремеевой Екатерины.
А С В Е S К О 5х 2х В равнобедренном треугольнике точка Е -середина основания АС, а точка К делит сторону ВС в отношении 2:5, считая от вершины С. Найдите.
§ 6. Отношение отрезков. 6 из диагностической работы. Точки М и N середины сторон соответственно ВС и CD параллелограмма ABCD. Отрезки AM и BN пересекаются.
Свойство медианы равнобедренного треугольника Создала учитель математики МОУ Ново-Камеликская СОШ Львова Н.В.
Геометрия глава 2 Треугольники Геометрия глава 2 Треугольники Подготовил Пикуло Владислав ученик 9 класса СПб лицей 488 ( учитель Курышова Н.Е. )
Теорема Чевы. Формулировка теоремы Чевы Пусть на сторонах треугольника ABC выбраны точки А 1ЄВС, В 1ЄАС, С 1ЄАВ Отрезки АА 1, ВВ 1, СС 1 пересекаются.

Cредняя линия треугольника, средняя линия трапеции.
Транксрипт:

Подготовила Ученица 8 класса «Б» Шебанкова Марина

Биография ученого Чева (Джованни) итальянский математик. Умер в 1734 г. Главными предметами его занятий были геометрия и механика. Он написал много сочинений. Самым замечательным из них было первое "De lineis rectis se invicem secantibus statica constructio" (Милан, 1678);. В первой его части автор доказывает теорему Менелая и ряд сходных с нею теорем при помощи статического метода, основанного на свойствах центра тяжести системы точек.

Теорема Чевы Если на сторонах АВ, ВС и СА треугольника АВС взяты соответственно точки С1, А1 и В1, то отрезки АА1, ВВ1 и СС1 пересекаются в одной точке тогда и только тогда, когда (1)

Пусть отрезки АА1, ВВ1 и СС1 пересекаются в точке О. Докажем,что По теореме о пропорциональных отрезках в треугольнике имеем: И Левые части этих равенств одинаковы, значит, равны и правые части. Приравнивая их, получаем Разделив обе части на правую часть,приходим к равенству (1) Доказательство.1.

У ТВЕРЖДЕНИЕ ОБРАТНОЕ ТЕОРЕМЕ. Пусть для точек А1, В1, С1, взятых на соответствующих сторонах треугольника ABC, Выполняется равенство(1).Докажем, что отрезки АА1,BB1,СС1 пересекаются в одной точке. Обозначим точку пересечения отрезков АА1 и ВВ1 через О и проведем прямую СО. Она пересекает сторону АВ в точке С2. Т.к. отрезки АА1,ВВ1 и СС2 пересекаются в одной точке, то на основании доказанного в первом пункте (2) Итак, имеют место равенства (1) и (2) Сопоставляя их, приходим к равенству,которое показывает, что точки С1 и С2 совпадают, и, значит, отрезки АА1, ВВ1 и СС1 пересекаются в точке О. Теорема доказана. С2 С2 А1А1 В1В1

Биография ученого Менелай Александрийский (Menélaos), древнегреческий астроном и математик (1 в.). Автор работ по сферической тригонометрии: 6 книг о вычислении хорд и 3 книги «Сферики» (сохранились в арабском переводе). Тригонометрия у Менелая отделена от геометрии и астрономии. Арабские авторы упоминают также о книге Менелая по гидростатике.

Теорема Менелая Если на сторонах АВ, ВС и продолжении АС треугольника АВС соответственно взяты точки С1, А1 и В1, то эти точки лежат на одной прямой тогда и только тогда, когда (3)

Доказательство.1. Пусть точки А1, В1 и С1 лежат на одной прямой. Докажем, что Проведем прямые AD,BM и CN параллельно прямой В1А1. Согласно обобщению теоремы Фалеса имеем: и Перемножая левые и правые части этих равенств, получаем:, откуда D

У ТВЕРЖДЕНИЕ ОБРАТНОЕ ТЕОРЕМЕ. Пусть точка В1 взята на продолжении стороны АС, а точки С1 и А1-на сторонах АВ и ВС, причем так, что выполнено равенство. Докажем, что точки А1, В1 и С1 лежат на одной прямой. А ВСА1А1 С1 В1

Доказательство. Прямая В1С1 пересекает сторону ВС в некоторой точке А2.Т.к точки В1,С1 и А2 лежат на одной прямой, то по теореме Менелая (4) Сопоставляя (3) и (4),приходим к равенству,которое показывает, что точки А1 и А2 делят сторону ВС в одном и том же отношении.Следовательно, точки А1 и А2 совпадают, и, значит, точки А1, В1 и С1 лежат на одной прямой. А ВСА2 С1 В1

Задача.1 Дано: точка К делит сторону АВ равнобедренного треугольника АВС (АВ=АС) в отношении 2:1. Точка Р лежит на продолжении АС за точку С, и АВ=СР. Найти: в каком отношении делит прямая РК сторону ВС. АК В Х Р С

Решение. По условию и Используя теорему Менелая, мы находим АК В Х Р С

Задача 2. На медиане BD треугольника ABC отмечена точка М так, что ВМ:MD=m:n. Прямая АМ пересекает сторону ВС в точке К. найдите отношение ВК:КС. D К

Решение. По теореме Менелая: ВМ-медиана, значит D К

Задача 3. Через середину М стороны ВС треугольника АВС, в котором АВАС, проведена прямая, параллельная биссектрисе угла А и пересекающая прямые АВ и АС соответственно в точках D и Е. Докажите, что BD=СЕ D Е

Решение. По теореме Менелая следует, что Т.к. точка М середина стороны ВС, следовательно.Значит. АЕ=DA,следовательно ЕС=BD. D Е