ТЕСТ по теме «Векторы в пространстве». 11 класс.
Вопрос 1 Точка К – середина отрезка АВ. Найдите длину отрезка АВ, если известны координаты точек А и К.
Вопрос 2 От точки Р, координаты которой известны, отложили вектор с концом в точке Q, длиной 3 и сонаправленный вектору с координатами (4; -4; 2). Найдите координаты точки Q. Q (0; 2; 4) Q (2; 2; 2) Q (-2; 2; 2) Q (2; 2; 4)
Вопрос 3 Даны координаты двух векторов. Найдите длину вектора, который является линейной комбинацией исходных векторов.
Вопрос 4 Чему равен косинус угла между ребрами АВ и СD тетраэдра ABCD, если известны координаты его вершин?
B (-5; -4; 4) B (-2; -3; 6) B (-5; -2; 4) B (-2; -2; 4) Вопрос 5. Точки А, М, и N, координаты которых известны, являются вершинами параллелограмма. Найдите координаты четвертой вершины.
Вопрос 6 В тетраэдре SABC точка М – пересечение медиан треугольника АВС. Разложите вектор SB по векторам SA, SC и SM.
2x + 5y + 3z – 4 = 0 2x – 5y – 3z – 9 = 0 2x – y + 3z + 8 = 0 2x +5y – 3z + 8 = 0 Вопрос 7. Известны координаты точек А, В и С. Найдите уравнение плоскости, перпендикулярной прямой АВ и проходящей через точку С.
Правильных ответов: ВыходВ начало