12 5 В прямоугольном параллелепипеде ABCDA 1 B 1 C 1 D 1 известны ребра AB = 5, АD = 12, CC 1 = 15. Найдите угол между плоскостями ABC и A 1 DB. D AN является.

Презентация:



Advertisements
Похожие презентации
В прямоугольном параллелепипеде ABCDA 1 B 1 C 1 D 1 точка M – середина ребра B 1 C 1, AB = 3, BC = 4, BB 1 = 2. Найдите угол между плоскостями BMD и ABC.
Advertisements

С B 1 L является наклонной к плоскости ABC. D A D1D1D1D1 C1C1C1C1 В B1B1B1B1 2 н-я п-р A1A1A1A1 3 2 NF 1) Построим линейный угол двугранного угла B 1 NAB.
С А В В 1 В 1 А 1 А 1 С 1 С 1 Основание прямой призмы ABCA 1 B 1 C 1 – треугольник АВС, площадь которого равна 12, АВ = 5. Боковое ребро призмы равно 36.
EF А 1 F, D А В С А 1 А 1 D1D1 С 1 С 1 В 1 В Угол между прямой EF и плоскостью АВС равен углу между EF и плоскостью А 1 В 1 С 1, т.к. эти плоскости.
Угол между плоскостями. В прямоугольном параллелепипеде ABCD A 1 B 1 C 1 D 1, где AB=5,AD=12, CC 1 =15. Найдите угол между плоскостями ABC и A 1 DB. Решение.
8 C D A B D1D1 C1C1 B1B1 A1A1 6 8 Угол между наклонной и плоскостью – это угол между наклонной и её проекцией на эту плоскость. наклонная В прямоугольном.
П-я 4 В А С1С1 В1В1 Основанием прямой призмы ABCA 1 B 1 C 1 является равнобедренный треугольник АВС, в котором СВ=СА=5, ВА=6. Высота призмы равна 24. Точка.
В основании прямой призмы АВСА 1 В 1 С 1 лежит прямоугольный треугольник АВС с прямым углом С, катет АС в два раза больше катета ВС. Известно, что плоскость.
8 D A B C A1A1 D1D1 C1C1 6 Угол между наклонной и плоскостью – это угол между наклонной и её проекцией на эту плоскость. В прямоугольном параллелепипеде.
D A B C A1A1 D1D1 C1C1 B1B N Угол между наклонной и плоскостью – это угол между наклонной и её проекцией на эту плоскость. проекция наклонная В прямоугольном.
C D A B D1D1 C1C1 B1B1 A1A1 4 С2 С2 В прямоугольном параллелепипеде ABCDA 1 B 1 C 1 D 1 найдите угол между прямой AB 1 и плоскостью AA 1 C, если AA 1 =
А А2А2 А1А1 В С D D2D2 С1С1 С2С2 D1D1 В1В В2В2 Найдите расстояние между вершинами А и С 2 многогранника, изображенного на рисунке. Все двугранные.
Девиз урока: « Дорогу осилит идущий, а математику – мыслящий.» « Три качества: обширные знания, привычка мыслить и благородство чувств – необходимы для.
Тема: Угол между прямой и плоскостью Тема: Угол между прямой и плоскостью. Урок 2 «Решаем С2 ЕГЭ» Разработала: Куракова Е. В., учитель математики МБОУ.
С D А 6 B 8 D 6 А В D1D1 С 1 С 1 В 1 В 1 А 1 А 1 В прямоугольном параллелепипеде ABCDA 1 B 1 C 1 D 1 известны ребра АВ=8, АD=6, СС 1 =5. Найдите угол между.
С2 по геометрии Выполнил ученик 11 класса «а» Школы 4 Никитин Андрей.
Задачи С 2 P CD A B a a 2 2a M a O A OP 2 a M 1. Длины всех ребер правильной четырехугольной пирамиды PABCD равны между собой. Найдите угол между прямыми.
В правильной четырехугольной призме ABCDA 1 B 1 C 1 D 1 со стороной основания 12 и высотой 21 на ребре AA 1 взята точка М так, что AM=8. На ребре BB 1.
В правильной четырехугольной призме АВСDA 1 B 1 C 1 D 1 стороны основания равны 2, а боковые ребра равны 5. На ребре АА 1 отмечена точка Е так, что АЕ.
Консультационный центр по подготовке выпускников к Государственной (итоговой) аттестации.
Транксрипт:

12 5 В прямоугольном параллелепипеде ABCDA 1 B 1 C 1 D 1 известны ребра AB = 5, АD = 12, CC 1 = 15. Найдите угол между плоскостями ABC и A 1 DB. D AN является проекцией. A B D1D1D1D1 C C1C1C1C1 п-р 15 1) Построим линейный угол двугранного угла A 1 BDA (BD – ребро двугранного угла) 2) AN BD, АА 1 – перпендикуляр к плоскости ABC AN – наклонная отрезка A 1 N на плоскость ABC. Применим теорему о трех перпендикулярах. AN BD п-я Т Т П A 1 N BD н-я н-я A 1 NA – линейный угол двугранного угла A 1 BDA Чтобы найти угол прямоугольного треугольника надо знать две его стороны. Известно, что AA 1 = 15. Найдем AN. п-я 5 12 н-я B1B1B1B1 A1A1A1A1 13 N

12 5 D A B D1D1D1D1 C C1C1C1C1 15N 5 12 B1B1B1B1 A1A1A1A1 13 B C A D12 N 5 13 Найдем АN через площадь Мы знаем катеты треугольника AA 1 N, значит, вычислим тангенс угла : отношение противолежащего катета к прилежащему катету.