А1А1 В правильной треугольной призме ABCА 1 В 1 С 1, все ребра которой равны, найдите угол между прямыми КМ и ТЕ, где точка К – середина ребра АА 1, точка.

Презентация:



Advertisements
Похожие презентации
А 1 А 1 В правильной треугольной призме ABCА 1 В 1 С 1, все ребра которой равны, найдите угол между прямыми КМ и ТЕ, где точка К – середина ребра АА 1,
Advertisements

1 1 1 А В С 1 С 1 А 1 А 112 В 1 В 1 С В правильной треугольной призме ABCА 1 В 1 С 1, все ребра которой равны 1, найдите угол между плоскостями AСВ 1 и.
T AB C M 1 K O1O1O1O1 В правильной четырехугольной пирамиде АВСMT со стороной основания а=4 и высотой ТО 1 = h =1. Найдите косинус угла между прямыми ОТ.
Сторона основания правильной треугольной призмы ABCA 1 B 1 C 1 равна 8. Высота этой призмы равна 6. Найти угол между прямыми CA 1 и АВ 1. C B1B1 A 8 60.
( ; ; 0) 2 1 (0;0;0) В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, точка D середина ребра A 1 B 1. Найдите косинус угла между.
Точка К – середина ребра АА 1 куба АВСDA 1 B 1 C 1 D 1. Найдите угол между прямыми А 1 В и СК. D А В С А1А1 D1D1 С1С1 В1В К Если в кубе не дано.
Взаимное расположение прямых в пространстве. Угол между скрещивающимися прямыми. Стереометрия.
Р ЕШЕНИЕ ЗАДАНИЙ С 2. В ЕДИНИЧНОМ КУБЕ АВСDА 1 В 1 С 1 D 1 НАЙДИТЕ УГОЛ МЕЖДУ ПРЯМЫМИ АВ 1 И ВС 1. Решение: Введем систему координат, считая началом координат.
Выполнила: ученица 11 «а» класса МОУ-СОШ 4 Филимонова Лена. Преподаватель: Александрова Тамара Владимировна.
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
Решите задачу Вычислите скалярное произведение двух векторов, если они имеют координаты {1; 2; 3}, {-1; -2; -3}.
O S A CB 1 1 D Угол между наклонной и плоскостью равен углу между наклонной и ее проекцией. K наклонная проекция M BM BK B M ? 22 В правильной.
С А В В 1 В 1 А 1 А 1 С 1 С 1 Основание прямой призмы ABCA 1 B 1 C 1 – треугольник АВС, площадь которого равна 12, АВ = 5. Боковое ребро призмы равно 36.
Фалес Милетский Древнегреческий ученый (ок. 625 – 547 гг. до н. э.) Если на одной из двух прямых отложить последовательно несколько равных отрезков и через.
D C A B 1 E Заменим СL на параллельную прямую ME. Угол между прямыми DM и CL будет равен углу между DM и ME. Длина ребра правильного тетраэдра ABCD равна.
В правильной четырехугольной призме через диагональ основания проведено сечение параллельно диагонали призмы. Найдите площадь сечения, если сторона основания.
Решение задач С2 Харитоненко Н.В. МБОУ СОШ 3 с.Александров Гай.
В правильной шестиугольной призме АВСDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 1, точки G и H – середины ребер соответственно А 1 В 1 и В 1 С.
A С1С1С1С1 A1A1A1A1 B1B1B1B1 2 B 2 Чтобы найти высоту A 1 K, выразим два раза площадь равнобедренного треугольника BA 1 C 1. K 55С 2H В правильной треугольной.
В основании прямой призмы АВСА 1 В 1 С 1 лежит прямоугольный треугольник АВС с прямым углом С, катет АС в два раза больше катета ВС. Известно, что плоскость.
Транксрипт:

А1А1 В правильной треугольной призме ABCА 1 В 1 С 1, все ребра которой равны, найдите угол между прямыми КМ и ТЕ, где точка К – середина ребра АА 1, точка М – середина ребра АВ, точка Т – середина ребра А 1 В 1, а точка Е – средина ребра СС 1. А В С С1С1 В1В Пусть ребро призмы 1. 1 М К Т Е КМ II A 1 B II TF F A 1 B II TF По теореме Фалеса: если A 1 T=TB 1, то B 1 F= FB. Значит, отрезок TF средняя линия A 1 B 1 B F T E 1 22 Можно применить теорему косинусов. Или можно построить прямоугольный треугольник.24 L