1 Урок математики. 11 класс. 6 октября 2010 г. Преподаватель ГОУ 671 Манасевич Н.А. РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ.

Презентация:



Advertisements
Похожие презентации
СЕМИНАР 10 – 11 классы. РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ.
Advertisements

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ Учитель: Копеина Наталья Васильевна 10 класс МОУ «Киришский лицей»
Презентация к уроку по алгебре (10 класс) на тему: Презентация к уроку Методы решения тригонометрических уравнений
Решение тригонометрических уравнений. Подготовка к ЕГЭ «Решение уравнений -это золотой ключ, открывающий все сезамы». ( С. Коваль) 1.
Типы тригонометрических уравнений и методы их решения.
Нет ли ошибки? Разложить на множители Урок обобщения по теме «Решение тригонометрических уравнений и неравенств»
Урок обобщения и систематизации знаний по темеРешение тригонометрических уравнений.
Способы решения тригонометрических уравнений Уравнения, приводимые к квадратным уравнениям Уравнения, приводимые к квадратным уравнениям Однородные уравнения.
УРОК АЛГЕБРЫ В 1О-М КЛАССЕ ТЕМА: «Решение тригонометрических уравнений (с использованием информационных технологий)»
Շնորհակալություն մեր ռուս կոլեգաներին : Նյութերը համացանցից ներքաշվել են 2009 թ. վերապատրաստումների ժամանակ : Վերապատրաստումները անցկացվել են Կոտայքի մարզի.
МЕТОДЫ РЕШЕНИЯ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ. МЕТОДЫ сведения уравнения к квадратномусведения уравнения к квадратномусведения уравнения к квадратномусведения.
Универсальная тригонометрическая подстановка Пример Другие подстановки, упрощающие нахождение интеграла Пример Интегрирование степеней тригонометрических.
Восемь способов решения одного тригонометрического уравнения.
Способы решения тригонометрических уравнений. Содержание I.ВведениеВведение II.Способы решения: 1) Замена переменнойЗамена переменной 2) Решение однородных.
Повторение алгебры в 11 классе ( подготовка к ЕГЭ ) Учитель Богдашкина В. А. С. Троицкое, 2012 год.
МБОУ «СОШ 6», Дорофеева Лилия Ильинична Алгебра и начала анализа 10 класс Восемь способов решения одного тригонометрического уравнения.
Тригонометрическим уравнением называется уравнение, содержащее переменную под знаком тригонометрических функций. Уравнения вида sin x = a; cos x = a;
Восемь способов решения тригонометрического уравнения sin x – cos x = 1 Проект составил ученик 10п класса МОУ «Бичурга – Баишевская СОШ» Мишкин Михаил.
МБОУ «СОШ 6», Дорофеева Лилия Ильинична,г.Нижнекамск,РТ Алгебра и начала анализа 10 класс Восемь способов решения одного тригонометрического уравнения.
Cos x + sin x =a Повторить формулы для решения простейших тригонометрических уравнений. Закрепить навык решения тригонометрических уравнений.
Транксрипт:

1 Урок математики. 11 класс. 6 октября 2010 г. Преподаватель ГОУ 671 Манасевич Н.А. РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

2 ЦЕЛЬ: Обобщение знаний по решению тригонометрических уравнений. Выделение основных проблем при решении этих уравнений: Потеря корней. Посторонние корни. Отбор корней.

3 ПЛАН УРОКА. 1.Вводная часть, повторение теоретического материала. (Фронтальная работа) 2.Решение тригонометрических уравнений.(Групповая работа) 3.Проблемы, возникающие при решении тригонометрических уравнений.

4 Основные методы решения тригонометрических уравнений Разложение на множители. Введение новой переменной. Функционально – графический метод.

5 Некоторые типы тригонометрических уравнений 1.Уравнения, сводящиеся к квадратным, относительно cosх = t, sinх = t. A sin 2 x + B cosx + C = 0 A cos 2 x + В sinx + C = 0 Решаются методом введения новой переменной. 2.Однородные уравнения первой и второй степени. I ст. A sinx + B cosx = 0 : cosx A tg x + B = 0 II ст. A sin 2 x + B sinx cosx + A cos 2 x = 0 : cos 2 x A tg 2 x + B tgx + C = 0 Решаются методом разложения на множители и методом введения новой переменной. 3. Уравнение вида: А sinx + B cosx = C. А, В, С 0 Применимы все методы.

6 4. Понижение степени. А cos2x + В = C. A cos2x + B = C. Решаются методом разложения на множители. A sin2x + B = C. Сводятся к однородным уравнениям С = С( ). Сводятся к уравнению А sin2x + B cos2x = C. 5. Уравнение вида: A(sinx + cosx) + B sin2x + C = 0. Сводятся к квадратным относительно t = sinx + cosx.

7 Формулы a cosx +b sinx заменим на C sin(x+ ), где sin = cos = - вспомогательный аргумент. Универсальная подстановка. х + 2 n; Проверка обязательна! Понижение степени. = (1 + cos2x ) : 2 = (1 – cos2x) : 2 Метод вспомогательного аргумента.

8 Правила Увидел квадрат – понижай степень. Увидел произведение – делай сумму. Увидел сумму – делай произведение.

9 1.Потеря корней: делим на g(х). опасные формулы (универсальная подстановка). Этими операциями мы сужаем область определения. 2. Лишние корни: возводим в четную степень. умножаем на g(х) (избавляемся от знаменателя). Этими операциями мы расширяем область определения. Потеря корней, лишние корни.

10 Примеры тригонометрических уравнений. Пример 2. sinx – cosx = 1 2π | | | У Х π-π -2π | | | || 0 _ 2 1 _ _ y = sin x y = cos x + 1 Пример 3. 8 cosx + 15 sinx = 17. Пример 1. 3sin 2x + cos2x + 1 = 0. Уравнения вида Asinx + Bcosx = C

11 Проблемы, возникающие при решении тригонометрических уравнений 1.Потеря корней. Делим на g(х). Применяем опасные формулы. Найдите ошибку. Пример. cos x = sin x * sin 2. Посторонние корни. Освобождаемся от знаменателя. Возводим в четную степень.

12 Пример 1. (sin 4x – sin 2x + cos 3x + 2sin x – 1) : (2sin 2x - ) = 0 Пример 2. \ У t / π 2π \ π У Х / / \

13. 0х 0х Отбор корней. Пример. tg x + tg 2x = tg 3x