В пирамиде DABC все ребра равны. Через О обозначим центр основания АВС, а через К – середину высоты DO пирамиды. Найдите расстояние от точки К до грани.

Презентация:



Advertisements
Похожие презентации
D C A B N 60 0 O Дан правильный тетраэдр ABCD с ребром. Найдите расстояние от вершины А до плоскости BDC О – точка пересечения медиан. Применим.
Advertisements

A a II На рисунке две скрещивающиеся прямые a и b. Через каждую из них проведена плоскость, параллельная другой прямой. Отрезки параллельных прямых, заключенные.
Одна из них спроектируется в точку: АC в точку N, а прямая BD в прямую BD, т.к. она лежит в плоскости проекции. В правильной треугольной пирамиде сторона.
Одна из них спроектируется в точку: АC в точку N, а прямая BD в прямую BD, т.к. она лежит в плоскости проекции. В правильной треугольной пирамиде боковое.
Одна из них спроектируется в точку: АC в точку N, а прямая BD в прямую BD, т.к. она лежит в плоскости проекции. В правильной треугольной пирамиде сторона.
2 1 В правильном тетраэдре АВСD точка М середина ребра DC. Найдите угол между прямой ВМ и плоскостью АВС. наклонная O D A C B E N проекция Если не дано.
Дан правильный тетраэдр MABC с ребром 1. Найдите расстояние между прямыми ВL и MO и, где L середина ребра MC, O центр грани ABC. М C В А E N L.
По условию плоскость АВК перпендикулярна ребру РС, значит, РС будет перпендикулярно любой прямой лежащей в плоскости АВК. 8 Р A B 8 Основанием правильной.
Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется Отрезок, соединяющий вершину треугольника с серединой противоположной.
3 20 AC ВN, AC SN АBC ВNS, NM NKнаклонная O S B A C K проекция 10 Угол между наклонной и плоскостью равен углу между наклонной и ее проекцией. N M ? В.
Медианы, биссектрисы и высоты треугольника. МЕДИАНА Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой.
Наклонная проекция O Дана правильная треугольная пирамида DABC с вершиной D. Ребро основания пирамиды равно, высота –. Найдите расстояние от середины ребра.
Медиана, биссектриса, высота треугольника. Теорема: Из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой и причем только один.
Медиана, биссектриса, высота треугольника. Медиана – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
A В С М Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой.
Ромб- это параллелограмм у которого все стороны равны. Так как ромб является параллерограммомм, то он обладает всеми свойствами параллелограмма.
По сторонам: 1.Разносторонний 2.Равносторонний 3.Равнобедренный По углам: 1.Остроугольный 2.Прямоугольный 3.Тупоугольный.
отрезок, соединяющий вершину треугольника с серединой противолежащей стороны Биссектриса треугольника Медиана треугольника Высота треугольника.
Виды треугольников (по сторонам) А В С М Р К Н О Т.
С 2. В правильной треугольной пирамиде сторона основания равна 4, а боковое ребро равно 3. Найдите расстояние от стороны основания до противоположного.
Транксрипт:

В пирамиде DABC все ребра равны. Через О обозначим центр основания АВС, а через К – середину высоты DO пирамиды. Найдите расстояние от точки К до грани АBD. a D A B 60 0 a N C O aL Ka ? 3a2 О – точка пересечения медиан. Применим свойство медиан: медианы треугольника пересекаются в отношении 2 к 1, считая от вершины СO : ON = 2 : 1. Вся медиана CN– это 3 части. NО = : 3 = (это 1 часть) CО = : 3 * 2 = (это 2 части) 3 a 2 3 a 6 3 a 2 3 a 3 3a6 3a a 3

3 a 2 O D 3 a 6 D A B 60 0 a N C O aL Ka ? 3a2 3a6 3a2 6 a 3 NL? K 6 a 3 6a 6 Треугольники NOD и KLD подобны по двум углам: угол D – общий, KLD и O – прямые.3