Курс лекций по теоретической механике Динамика (II часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для студентов, обучавшихся по специальностям СЖД, ПГС и СДМ в НИИЖТе и МИИТе ( гг.). Учебный материал соответствует календарным планам в объеме трех семестров. Для полной реализации анимационных эффектов при презентации необходимо использовать средство просмотра Power Point не ниже, чем встроенный в Microsoft Office операционной системы Windows-ХР Professional. Запуск презентации – F5, навигация – Enter, навигационные клавиши, щелчок мыши, кнопки. Завершение – Esc. Замечания и предложения можно послать по Московский государственный университет путей сообщения (МИИТ) Кафедра теоретической механики Научно-технический центр транспортных технологий
Лекция 13. Лекция 13 Аналитическая механика. Обобщенные координаты. Уравнения связей. Возможные перемещения. Идеальные связи. Принцип возможных перемещений. Примеры использования принципа возможных перемещений при определении реакций связей.
15 Лекция 13 Аналитическая механика – устанавливает общие, единые методы изучения движения и равновесия любых самых сложных материальных систем средствами математического анализа. Для этого вводятся новые понятия и обобщаются старые. Связи – рассматриваются теперь как некоторые условия, налагаемые на систему, которые должны удовлетворяться в процессе движения системы. Они содержат соотношения (уравнения или неравенства) между координатами, компонентами скоростей и ускорений и, возможно, времени. Классификация связей: По интегрируемости: Голономные (геометрические) – выражаются конечными уравнениями относительно координат или интегрируемыми дифференциальными уравнениями относительно координат: Неголономные (кинематические) - выражаются неинтегрируемыми дифференциальными уравнениями относительно координат, т.е. уравнениями, содержащими не только координаты точек системы, но и их производные по времени: Неинтегрируемость состоит в том, что их нельзя привести к виду уравнений голономной связи. По зависимости от времени: Склерономные (стационарные) – не зависящие от времени: Например, уравнение траектории, полученное для некоторой точки шатуна кривошипно-шатунного механизма: рассматривается как уравнение cклерономной голономной связи: Реономные (нестационарные) – зависящие от времени. Например, кинематическое возбуждение колебаний. По освобождаемости: Неосвобождающие (удерживающие или двухсторонние) – описываются уравнением, исключающим возможность покидания точкой траектории или поверхности, описываемой уравнением. Этому соответствует, например, жесткая связь в виде шарнирного стержня. Освобождающие (неудерживающие или односторонние) – выражаются неравенством, регламентирующим связь лишь в одном направлении, например, гибкая нить или гладкая поверхность. Обобщенные координаты – независимые параметры, однозначно определяющее положение механической системы при ее движении. Обобщенность состоит в том, что они могут иметь различную природу (линейные или угловые перемещения относительно некоторого начального положения или какие-либо другие величины). Общее обозначение – q i (i = 1,…,n). Число степеней свободы – число независимых обобщенных координат, через которые можно выразить декартовые координаты всех точек системы. Например: A x y yAyA xAxA O Здесь положение любой точки стержня (например, А) однозначно определяется значением всего одной величины – угла, который является обобщенной координатой (q = ). Число степеней свободы равно n = 1. Уравнение связи для рассматриваемой точки A: Если на систему N точек в пространстве наложено m голономных связей, то декартовые координаты всегда могут быть выражены конечными соотношениями: Число обобщенных координат равно n = 3N – m.
Лекция 13 ( продолжение – 13.2 ) Возможные перемещения – бесконечно малые перемещения, допускаемые наложенными на систему связями. С точностью до бесконечно малых приращения радиуса-вектора лежат в касательной плоскости к поверхности связи и представляют собой возможные перемещения. В случае нестационарной голономной связи f(x,y,z,t) = 0 возможные перемещения рассматриваются для положения и формы поверхности связи, соответствующих данному моменту времени. Возможные перемещения не зависят от приложенных к системе сил. Действительные перемещения – бесконечно малые (элементарные) перемещения, действительно (фактически) происходящие за время dt, допускаемые наложенными на систему связями. Действительные перемещения зависят от сил, приложенных к системе, от вида связей (стационарных, нестационарных, голономных, неголономных) и начальных условий. Таким образом, возможные перемещения являются более общим понятием, чем действительные перемещения. T бsбs ds Поскольку вектор положения точки системы можно выразить через обобщенные координаты, то возможные перемещения выражаются через приращения обобщенных координат как полный дифференциал: или Вычисление возможных перемещений: Геометрический способ - в силу малости возможных перемещений при повороте твердого тела любая его точка может рассматриваться движущейся не по дуге, а по перпендикуляру к радиусу вращения в сторону угла поворота: бyAбyA бxAбxA A x y yAyA xAxA O x A O бxAбxA бyA=бsAбyA=бsA Для малых углов cos 1, sin, тогда: Например, для наклонного стержня: A y O x бsAбsA Аналитический способ – вычисляется вариация от координат: В отличие от геометрического способа знаки возможного приращения координат получаются автоматически. При использовании геометрического способа в дальнейших вычислениях, например, работы, необходимо учитывать направление полученного приращения (перемещения) Возможная работа силы – элементарная работа силы на том или ином возможном перемещении: В координатном виде: В естественном виде:
Лекция 13 ( продолжение – 13.3 ) 1717 Примеры использования принципа возможных перемещений для определения реакций связей: Пример 1. Определить реакцию балки в правой опоре: A B a l Балка неподвижна и не имеет ни возможных, ни действительных перемещений. Отбросим связь, реакция которой отыскивается, и заменим ее реакцией: Без правой опоры балка может поворачиваться под действием активных сил, реакцию R B причисляем к активным силам. Зададим малое возможное перемещение: Идеальные связи – связи, при которых сумма элементарных работ сил реакций связи на любом возможном перемещении равна нулю: Примеры идеальных связей: абсолютно гладкая поверхность (при скольжении), абсолютно твердая поверхность (при качении без скольжения). Любую неидеальную связь можно рассматривать как идеальную, если соответствующие реакции связи (совершающие работу на возможных перемещения) причислить к задаваемым (активным) силам. Принцип возможных перемещений – Для равновесия материальной системы, подчиненной голономным, стационарным, двухсторонним и идеальным связям, необходимо и достаточно, чтобы сумма элементарных работ всех активных сил на любом возможном перемещении из предполагаемого положения равновесия равнялось нулю: Доказательство необходимости: Система находится в равновесии и для каждой точки удовлетворяется уравнение равновесия: Умножим скалярно на вектор возможного перемещения точки и сложим: = 0 Доказательство достаточности: Дано: Предположим, что равновесия нет. Тогда каждая из точек под действием активных сил придет в движение, переместится за время dt на малое действительное перемещение dr. Рассматривая эти перемещения, как возможные, вычислим работу и просуммируем: = 0 Получили противоречие с исходным равенством. Значит предположение об отсутствии равновесия неверно. б бsPбsP бsBбsB Запишем сумму работ: Вычислим возможные перемещения: Пример 2. Определить опорный момент многопролетной составной балке в левой опоре: б бsPбsP бsBбsB Отбросим в жесткой заделке связь, препятствующую повороту балки, и заменим ее парой сил M A : MAMA A B a l l C D E b b бsDбsD Вычислим возможные перемещения: Запишем сумму работ: Заметим, что 1. для нахождения опорного момента M A из уравнений статики потребовалось бы решить как минимум три уравнения равновесия; 2. эпюра возможных перемещений пропорциональна линии влияния усилия; 3. если задать возможное перемещение для искомой реакции равным 1, например, б =1, то эпюра перемещений будет полностью тождественна линии влияния поскольку