Проценты. Что такое проценты? Ответить на этот вопрос вам поможет наша презентация.

Презентация:



Advertisements
Похожие презентации
В ПЕРЕВОДЕ С ЛАТЫНИ «ПРОЦЕНТ» - СОТАЯ ЧАСТЬ ЧИСЛА. БЫЛА ПРИДУМАНА СПЕЦИАЛЬНАЯ ЗАПИСЬ: %
Advertisements

Проектная творческая работа по математике: «Задачи на проценты, смеси и сплавы» ученицы 9 «А» класса Демидовой Анастасии. Научный руководитель: Барыбина.
Работа со счётом. Депозиты Дубров М.А.© Преподаватель «Центра информационной культуры» Санкт-Петербург 2007 год.
Обобщающий урок. Решение задач на проценты Урок математики в 8 классе Спиридонова София Валериановна Паратмарская ООШ 2007 год.
ИСТОРИЯ ВОЗНИКНОВЕНИЯ ПРОЦЕНТОВ «pro centum» (от лат.) - это «на сто». Первые таблицы процентов были составлены ещё вавилонянами. Индийцам проценты были.
Применение решения задач на проценты.. 1.Определение процентов. Процент Процент - это одно из математических понятий. Слово процент происходит от латинского.
УРОК МАТЕМАТИКИ В 5 КЛАССЕ ПО ТЕМЕ: «Проценты». ЦЕЛЬ УРОКА Ввести понятие процента Обозначать, читать и находить процент чисел и некоторых единиц измерения.
Сколько лет проценту? Работу выполнили ученики 7 класса Г г. Северодвинск 2009г. Муниципальное образовательное учреждение «Средняя общеобразовательная.
Процентные расчёты на каждый день. Что такое процент? Сотая часть метра – это сантиметр, сотая часть рубля – копейка, сотая часть центнера – килограмм.
Использованы КИМ для подготовки к итоговой аттестации.
Решение текстовых задач. Учитель математики МОУ лицей 90 Корнилова Тамара Юрьевна 2011г.
5 класс Калистратова И.А. школа 91 г.Нижний Новгород.
ГИА- 9 класс 3 Решение задач. Городской бюджет составляет 45 млн. р., а расходы на одну из его статей составили 12,5%. Сколько рублей потрачено на эту.
Сотая часть метра – сантиметр 1/100м сантиметр 1/100м Сотая часть центнера – килограмм 1/100ц килограмм 1/100ц Сотая часть рубля – копейка 1/100руб копейка.
Задачи на проценты в химии. Автор: Дубровский Владимир.
Проценты. Слово процент происходит от латинского pro centum, что означает «от сотни» или «на 100». Отсюда и определение: процентом называется сотая часть.
ЗАДАЧИ НА ПРОЦЕНТЫ. Учебно-методическое пособие для школьников Учитель-репетитор Екатерина Васильевна Карпенко 1.Определение процента (стр.2). 2. Определение.
Позиционные системы счисления Учитель информатики МОУ СОШ 10 Несмачная Г.В. МОУ СОШ 10 Несмачная Г.В.
Тема. Понятие процента Тема. Понятие процента. Скидки на покупки Предоставляем рассрочку без банка, без процентов.
Прогрессии и банковские расчёты 9 класс ОБ АВТОРЕ.
Транксрипт:

Проценты. Что такое проценты? Ответить на этот вопрос вам поможет наша презентация.

Введение Проценты Когда появились проценты

Проведем опыт ОПЫТ:Попробуем ответить на вопрос: много ли соли в морской воде?Конечно, можно налить в ведро морскую воду, поставить его на огонь, и подождав, пока вся вода испарится, собрать и взвесить оставшуюся соль.Этот опыт не совсем удачен, так как ведра бывают разные и воды может быть налито разное количество.

Проценты…. В переводе с латыни «процент» -- сотая часть.Была придумана их специальная запись:%. Говорят, что этот знак, возник из-за ошибки наборщика, у которого сломалась литера. Запись отношений стала удобнее, исчезли нули и запятая, а символ % сразу указывает, что перед нами относительная величина, а не граммы, литры, рубли или метры.

Проценты появились ещё в древней Индии в Vв. Это закономерно, так как в Индии с давних пор счет велся в десятичной системе счисления. В Европе десятичные дроби появились позже, их ввел бельгийский ученый С.Стевен. В 1584 году он впервые опубликовал таблицу процентов.

С помощью процентов люди могут определять сколько соли в морской воде, сколько меди в сплаве и т.д.В математике существует множество задач на тему процентов. Давайте рассмотрим одну из таких задач:

1. Цену товара сперва снизили на 20%, затем новую цену снизили еще на15% и, наконец, после перерасчета произвели снижение еще на10%. На сколько % всего снизили первоначальную цену товара? Решение: Пусть первоначальная цена товара X руб.,что соответствует100%. Тогда после первого снижения цена товара будетX- 0.2*X=0.8*X. После второго снижения 0.8*X- 0.15*0.8*X=0.68*X.После третьего снижения 0.68*X-0.68*X*0.1=0.612*X. Всего цена товара снизилась на X *X= 0.388*X X---100%, 0.388*X--- Y%. Y%=(0.388*X*100%)/X=38.8% Ответ:38.8%

Задачи: 2.Сберегательные банки начисляют по вкладам ежегодно 2%вклада. Вкладчик внес в сбербанк 150 рублей. Какой станет сумма вклада через 2 года? Решение: Вклад к концу 1года составит *0.02=150*1.02=153рубля. А к концу 2 года *0.02=153*1.02=156руб.6 коп.

Ну вот и все!!! Теперь мы всё знаем про проценты: знаем их историю появления, умеем проводить опыты и даже решать задачи…