«Если продолжить одно из маленьких звеньев ломаной, составляющей кривую линию, то эта продолженная таким образом сторона будет называться касательной.

Презентация:



Advertisements
Похожие презентации
«Если продолжить одно из маленьких звеньев ломаной, составляющей кривую линию, то эта продолженная таким образом сторона будет называться касательной.
Advertisements

Знать правила дифференцирования функций Знать уравнение касательной к графику функции в заданной точке Знать геометрический и физический смысл производной.
Угловой коэффициент прямой. Прямая проходит через начало координат и точку Р(3; -1). Чему равен ее угловой коэффициент?
Готовимся к экзамену. обобщить и закрепить ключевые задачи по теме, обобщить и закрепить применение техники дифференцирования, обобщить и закрепить применение.
Производная и ее применение Выполнила : Федотова Анастасия.
Производная функции. 1. Задача, приводимая к понятию «производная» 1. Задача, приводимая к понятию «производная» Мгновенная скорость движения Физический.
Задача 1 (о скорости движения). По прямой, на которой заданы начало отсчета, единица измерения (метр) и направление, движется некоторое тело (материальная.
Определение производной от функции (К учебнику Колмогорова А.Н. «Алгебра и начала анализа 10-11») Цель презентации – обеспечить максимальную наглядность.
Определение производной производной Задача о вычислении мгновенной скорости s ( t ) = 4 t² - закон движения материальной точки по прямой s - путь, пройденный.
Область определения Областью определения D(y) функции y = f(x) называется множество значений аргумента х, для которого выражение f(x) определено (имеет.
х y 0 k – угловой коэффициент прямой(секущей) Касательная Секущая Обозначение:
Геометрический и механический смысл производной Геометрический смысл Механический смысл.
Производная и дифференциал.. Геометрический смысл производной секущая Будем М М 0. Тогда секущая М 0 М занимает соответственно положения М 0 М 1, М 0.
Геометрический смысл производной Задания для устного счета Упражнение класс.
Производная и ее применение. Содержание : Справочные сведения : Геометрический смысл производной слайды 3-6 Задание 1 слайд 7 Задание 2 слайд 8 Уравнение.
Геометрический смысл производной Значение производной функции у=f(x) в точке x=x 0 равно угловому коэффициенту касательной к графику функции у=f(x) в.
Задачи, приводящие к понятию производной На рисунке изображен график движения туриста от базы и обратно. С какой скоростью он шел первые 2 часа?
х y 0 k – угловой коэффициент прямой (касательной) Касательная Геометрический смысл производной Производная от функции в данной точке равна угловому коэффициенту.
Методическая разработка по дисциплине «Математика» на тему «Физический и геометрический смысл производной» Составила: преподаватель высшей категории Викулина.
Х y 0 k – угловой коэффициент прямой (касательной) Касательная Геометрический смысл производной Производная от функции в данной точке равна угловому коэффициенту.
Транксрипт:

«Если продолжить одно из маленьких звеньев ломаной, составляющей кривую линию, то эта продолженная таким образом сторона будет называться касательной к кривой.»

Касательная к кривой. I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I

- это угловой коэффициент касательной. Р Р1Р1

Угловой коэффициент прямой. Прямая проходит через начало координат и точку Р(3; -1). Чему равен ее угловой коэффициент?

Найдите угловые коэффициенты прямых:

х y 0 k – угловой коэффициент прямой(секущей ) Секущая стремится занять положение касательной. То есть, касательная есть предельное положение секущей. Касательная Секущая Р Р1Р1

х y 0 Касательная Угловой коэффициент касательной можно найти как предел выражения:

х y 0 k – угловой коэффициент прямой(секущей) Касательная Секущая Обозначение:

х y 0 k – угловой коэффициент прямой(касательной) Касательная Геометрический смысл производной Производная от функции в данной точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке.

х y 0 k – угловой коэффициент прямой(секущей) Касательная А В Геометрический смысл производной. Производная от функции в данной точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке.

Исаак Ньютон (1643 – 1727) «Когда величина является максимальной или минимальной, в этот момент она не течет ни вперед, ни назад.»

t t1t1 Свободное падение

t t1t1

Используя слово «предел», можно сказать, что мгновенная скорость в точке t – это предел средней скорости при стягивании отрезка, на котором она изменяется, в точку t или в символической записи - это скорость

. Δх – перемещение тела Δt – промежуток времени в течение которого выполнялось движение