Теорема о вписанном угле в окружность. Теорема: вписанный в окружность угол равен половине градусной меры дуги, на которую он опирается (или половине центрального угла, соответствующего данной дуге), то есть.
2) Следствия из теоремы о вписанном угле в окружность. 2.1) Свойство углов, опирающихся на одну дугу. Теорема: если вписанные углы опираются на одну дугу, то они равны (если они опираются на дополнительные дуги, их сумма равна 180 градусам.
2.2) Свойство угла, опирающегося на диаметр. Теорема: вписанный угол в окружность опирается на диаметр тогда и только тогда, когда он прямой. AC-диаметр
Теорема 1: если из одной точки, не лежащей на окружности, проведены к ней две касательные, то их отрезки равны, то есть PB=PC. 3) Cвойство отрезков касательных. Окружность, вписанная в угол Теорема 2: Если окружность вписана в угол, то ее центр лежит на биссектрисе этого угла, то есть PO-биссектриса.
4) Свойство отрезков хорд при внутреннем пересечении секущих. Теорема 1: произведение отрезков одной хорды равно произведению отрезков другой хорды, то есть =. Теорема 2: угол между хордами равен полусумме дуг, которые этими хордами образуются на окружности, то есть
5) Свойство отрезков хорд при внешнем пересечении секущих. Теорема 1: произведение отрезков одной секущей равно произведению отрезков другой, то есть = Теорема 2: угол между секущими равен полуразности соответствующих им дуг, то есть
6) Свойства квадрата отрезка касательной Теорема 1: Квадрат отрезка касательной равен произведению отрезков секущей, то есть Теорема 2:угол между касательной и секущей равен полуразности соответствующих им дуг, то есть
7) Угол между касательной и секущей Теорема: угол между касательной и секущей, проведенными из одной точки окружности, равен половине дуги, которую отсекает секущая (половине центрального угла, соответствующего данной дуге).
A В С 56 0 О Задача 11
A В О С 23 0 Задача 12
B C A О Задача 3
A B C 34 0 Задача 15
A B C 54 0 D Задача 16
B C A O 50 0 Задача 4
B C A X Задача 6
B C A Задача 9
A B D C 53 0 Задача 13
A B C D K Задача 24
F B C A 45 0 D 89 0 Задача 25
Обухова Н.С, МОУ СОШ 17 г.Заволжья Нижегородской области F B C A 33 0 D 50 0 Задача 30